To see the other types of publications on this topic, follow the link: Fischer synthesis.

Journal articles on the topic 'Fischer synthesis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fischer synthesis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Luo, Mingsheng, Hussein Hamdeh, and Burtron H. Davis. "Fischer-Tropsch Synthesis." Catalysis Today 140, no. 3-4 (February 2009): 127–34. http://dx.doi.org/10.1016/j.cattod.2008.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jacobs, Gary, Tapan K. Das, Patricia M. Patterson, Jinlin Li, Luc Sanchez, and Burtron H. Davis. "Fischer–Tropsch synthesis XAFS." Applied Catalysis A: General 247, no. 2 (July 2003): 335–43. http://dx.doi.org/10.1016/s0926-860x(03)00107-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaga, Atsushi, Tomohiro Fukushima, Jun Shimokawa, and Masato Kitamura. "Photoredox Fischer Indole Synthesis." Synthesis 51, no. 17 (May 9, 2019): 3214–20. http://dx.doi.org/10.1055/s-0037-1611535.

Full text
Abstract:
Visible light photoredox conditions were applied to the traditional Fischer indole synthesis. N,N-Diarylhydrazones were efficiently converted into the corresponding indoles even at 30 °C by treatment with bromotrichloromethane in the presence of Ru(bpy)3Cl2·6H2O as the photocatalyst. Electrochemical study revealed the viability of oxidative quenching cycle for the photocatalysis, which set the basis for proposing the redox-based reaction mechanism.
APA, Harvard, Vancouver, ISO, and other styles
4

Parkyns, N. D. "The Fischer-Tropsch synthesis." Fuel 65, no. 4 (April 1986): 599. http://dx.doi.org/10.1016/0016-2361(86)90058-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Hua-Kun, Fan Zhang, Jing-Yu Li, Zi-Rong Tang, and Yi-Jun Xu. "Photo-driven Fischer–Tropsch synthesis." Journal of Materials Chemistry A 8, no. 46 (2020): 24253–66. http://dx.doi.org/10.1039/d0ta09097b.

Full text
Abstract:
Photo-driven Fischer–Tropsch synthesis (FTS) provides a attractive and sustainable alternative compared to traditional FTS. This minireview expatiates the recent advances of various metal-based catalysts for photo-driven FTS.
APA, Harvard, Vancouver, ISO, and other styles
6

Maklad, Noha. "ChemInform Abstract: Fischer Oxazole Synthesis." ChemInform 43, no. 19 (April 12, 2012): no. http://dx.doi.org/10.1002/chin.201219242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guettel, R., U. Kunz, and T. Turek. "Reactors for Fischer-Tropsch Synthesis." Chemical Engineering & Technology 31, no. 5 (May 2008): 746–54. http://dx.doi.org/10.1002/ceat.200800023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

El Kaïm, Laurent, Laurence Grimaud, and Caroline Ronsseray. "Three-Component Fischer Indole Synthesis." Synlett 2010, no. 15 (August 12, 2010): 2296–98. http://dx.doi.org/10.1055/s-0030-1258037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Enger, Bjørn Christian, and Anders Holmen. "Nickel and Fischer-Tropsch Synthesis." Catalysis Reviews 54, no. 4 (October 2012): 437–88. http://dx.doi.org/10.1080/01614940.2012.670088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kliger, G. A., O. A. Lesik, A. I. Mikaya, �. V. Marchevskaya, V. G. Zaikin, L. S. Glebov, and S. M. Loktev. "Piperidine-modified fischer-tropsch synthesis." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 40, no. 2 (February 1991): 435–38. http://dx.doi.org/10.1007/bf00965446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yokota, Kohshiroh, Yoshio Hanakata, and Kaoru Fujimoto. "Supercritical phase Fischer-Tropsch synthesis." Chemical Engineering Science 45, no. 8 (1990): 2743–49. http://dx.doi.org/10.1016/0009-2509(90)80166-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Almeida, L. C., F. J. Echave, O. Sanz, M. A. Centeno, G. Arzamendi, L. M. Gandía, E. F. Sousa-Aguiar, J. A. Odriozola, and M. Montes. "Fischer–Tropsch synthesis in microchannels." Chemical Engineering Journal 167, no. 2-3 (March 2011): 536–44. http://dx.doi.org/10.1016/j.cej.2010.09.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Skřínský, Jan, Ján Vereš, and Karel Borovec. "Experimental Modelling of Autoignition Temperature for Alkyl/Alkenyl Products from Fischer-Tropsch Synthesis." MATEC Web of Conferences 168 (2018): 07014. http://dx.doi.org/10.1051/matecconf/201816807014.

Full text
Abstract:
Interest in Fischer-Tropsch technology is increasing rapidly. Alkyl/alkenyl products from Fischer-Tropsch synthesis are alternative, renewable, environmentally and economically attractive fuels and there are considered one of the most favorable fuels for conventional fossil-based fuels. The chemistry of this gas-to-liquid industry converts synthesis gas containing carbon monoxide and hydrogen to oxygenated hydrocarbons such as alcohols. The fire hazards associated with the use of these liquid hydrocarbons mixtures are obvious. This article aims to explore the fundamental fire and explosion characteristics for main products composition from Fischer-Tropsch synthesis.
APA, Harvard, Vancouver, ISO, and other styles
14

Park, Jo-Yong. "Synfuel Production Technology : Catalyst for Fischer-Tropsch Synthesis." Journal of the Korean Oil Chemists Society 30, no. 4 (December 30, 2013): 726–39. http://dx.doi.org/10.12925/jkocs.2013.30.4.726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhao, Hong Xia, and Hai Liang Lü. "Support Modification on the Catalytic Performance of Co/SiO2 Catalyst in Fisher-Tropsch Synthesis." Advanced Materials Research 850-851 (December 2013): 148–51. http://dx.doi.org/10.4028/www.scientific.net/amr.850-851.148.

Full text
Abstract:
The effects of support modification on cobalt based catalysts in Fischer-Tropsch synthesis were investigated. Part of silica support was modified with ammonia solution and the other part not. The Co/SiO2 catalyst with the support surface modified by ammonia solution showed larger particle size, strong Co-Si interaction, higher activity and selectivity in Fischer-Tropsch synthesis. It could be concluded that the support acidity can be controlled thus affected the reaction property of the catalysts in Fischer-Tropsch synthesis.
APA, Harvard, Vancouver, ISO, and other styles
16

Ordomsky, V. V., B. Legras, K. Cheng, S. Paul, and A. Y. Khodakov. "The role of carbon atoms of supported iron carbides in Fischer–Tropsch synthesis." Catalysis Science & Technology 5, no. 3 (2015): 1433–37. http://dx.doi.org/10.1039/c4cy01631a.

Full text
Abstract:
High reactivity of iron carbides enhances the Fischer–Tropsch reaction rate on supported iron catalysts. Carbon atoms in iron carbide are involved in the initiation of chain growth in Fischer–Tropsch synthesis.
APA, Harvard, Vancouver, ISO, and other styles
17

Markova, M., A. Stepacheva, A. Gavrilenko, and I. Petukhova. "Ru-containing Catalysts for Liquid-phase Fischer-Tropsch Synthesis." Bulletin of Science and Practice 5, no. 11 (November 15, 2019): 37–44. http://dx.doi.org/10.33619/10.33619/2414-2948/48/04.

Full text
Abstract:
The search for new stable and active catalysts of Fischer-Tropsch synthesis is one of the key directions for production of liquid fuels from alternative raw materials. Stabilization of the active phase is the main task in the development of catalysts for hydrogenation of CO into liquid fuels. This problem can be solved by choosing the optimal support, as well as the synthesis method. This work is devoted to the development of new polymer mono– and bimetallic Ru-containing catalysts for liquid phase Fischer-Tropsch synthesis. It is shown that the use of 1% Ru-HPS and 10% Co — 1% Ru-HPS allows to obtain a high yield of gasoline hydrocarbons (more than 70%), providing a high conversion of CO (up to 23%). The selected polymer-based systems showed high stability in the Fischer-Tropsch synthesis process.
APA, Harvard, Vancouver, ISO, and other styles
18

FAN, Li, Kohshiroh YOKOTA, and Kaoru FUJIMOTO. "Fischer-Tropsch Synthesis in Supercritical Phase." Journal of The Japan Petroleum Institute 38, no. 2 (1995): 71–80. http://dx.doi.org/10.1627/jpi1958.38.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tsubaki, Noritatsu, and Kaoru Fujimoto. "Product control in Fischer–Tropsch synthesis." Fuel Processing Technology 62, no. 2-3 (February 2000): 173–86. http://dx.doi.org/10.1016/s0378-3820(99)00122-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Adesina, A. A., R. R. Hudgins, and P. L. Silveston. "Fischer-Tropsch synthesis under periodic operation." Catalysis Today 25, no. 2 (August 1995): 127–44. http://dx.doi.org/10.1016/0920-5861(95)00103-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Blanks, Robert F. "Fischer-Tropsch synthesis gas conversion reactor." Chemical Engineering Science 47, no. 5 (April 1992): 959–66. http://dx.doi.org/10.1016/0009-2509(92)80222-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Galarraga, C., E. Peluso, and H. de Lasa. "Eggshell catalysts for Fischer–Tropsch synthesis." Chemical Engineering Journal 82, no. 1-3 (March 2001): 13–20. http://dx.doi.org/10.1016/s1385-8947(00)00352-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Peluso, E., C. Galarraga, and H. de Lasa. "Eggshell catalyst in Fischer–Tropsch synthesis." Chemical Engineering Science 56, no. 4 (February 2001): 1239–45. http://dx.doi.org/10.1016/s0009-2509(00)00345-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tau, Li-Min, Hossein A. Dabbagh, Thomas P. Wilson, and Burtron H. Davis. "Fischer—Tropsch synthesis with iron catalysts." Applied Catalysis 56, no. 1 (January 1989): 95–106. http://dx.doi.org/10.1016/s0166-9834(00)80161-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gao, Wa, Qingshan Zhu, and Ding Ma. "Nanostructured Catalyst for Fischer-Tropsch Synthesis." Chinese Journal of Chemistry 36, no. 9 (July 20, 2018): 798–808. http://dx.doi.org/10.1002/cjoc.201800146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hammer, H., M. Joisten, S. Lüngen, and D. Winkler. "New zeolites in fischer-tropsch synthesis." International Journal of Energy Research 18, no. 2 (March 1994): 223–31. http://dx.doi.org/10.1002/er.4440180220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Haag, Benjamin A., Zhi-Guang Zhang, Jin-Shan Li, and Paul Knochel. "Fischer Indole Synthesis with Organozinc Reagents." Angewandte Chemie International Edition 49, no. 49 (October 26, 2010): 9513–16. http://dx.doi.org/10.1002/anie.201005319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dry, Mark E. "Fischer-Tropsch synthesis over iron catalysts." Catalysis Letters 7, no. 1-4 (1991): 241–51. http://dx.doi.org/10.1007/bf00764506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Simoneau, Christopher A., and Bruce Ganem. "A three-component Fischer indole synthesis." Nature Protocols 3, no. 8 (July 17, 2008): 1249–52. http://dx.doi.org/10.1038/nprot.2008.94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kapteijn, Freek, Ronald M. de Deugd, and Jacob A. Moulijn. "Fischer–Tropsch synthesis using monolithic catalysts." Catalysis Today 105, no. 3-4 (August 2005): 350–56. http://dx.doi.org/10.1016/j.cattod.2005.06.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kustov, L. M., and A. L. Tarasov. "Fischer—Tropsch synthesis in ionic liquids." Russian Chemical Bulletin 64, no. 12 (December 2015): 2841–44. http://dx.doi.org/10.1007/s11172-015-1235-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yokota, Kohshiroh, and Kaoru Fujimoto. "Supercritical phase Fischer-Tropsch synthesis reaction." Fuel 68, no. 2 (February 1989): 255–56. http://dx.doi.org/10.1016/0016-2361(89)90335-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yokota, Kohshiroh, Yoshio Hanakata, and Kaoru Fujimoto. "Supercritical phase Fischer—Tropsch synthesis reaction." Fuel 70, no. 8 (August 1991): 989–94. http://dx.doi.org/10.1016/0016-2361(91)90056-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hájek, Jiří, Vladimír Hönig, Michal Obergruber, Jan Jenčík, Aleš Vráblík, Radek Černý, Martin Pšenička, and Tomáš Herink. "Advanced Biofuels Based on Fischer–Tropsch Synthesis for Applications in Gasoline Engines." Materials 14, no. 11 (June 7, 2021): 3134. http://dx.doi.org/10.3390/ma14113134.

Full text
Abstract:
The aim of the article is to determine the properties of fuel mixtures of Fischer–Tropsch naphtha fraction with traditional gasoline (petrol) to be able to integrate the production of advanced alternative fuel based on Fischer–Tropsch synthesis into existing fuel markets. The density, octane number, vapor pressure, cloud point, water content, sulphur content, refractive index, ASTM color, heat of combustion, and fuel composition were measured using the gas chromatography method PIONA. It was found that fuel properties of Fischer–Tropsch naphtha fraction is not much comparable to conventional gasoline (petrol) due to the high n-alkane content. This research work recommends the creation of a low-percentage mixture of 3 vol.% of FT naphtha fraction with traditional gasoline to minimize negative effects—similar to the current legislative limit of 5 vol.% of bioethanol in E5 gasoline. FT naphtha fraction as a biocomponent does not contain sulphur or polyaromatic hydrocarbons nor benzene. Waste materials can be processed by FT synthesis. Fischer–Tropsch synthesis can be considered a universal fuel—the naphtha fraction cut can be declared as a biocomponent for gasoline fuel without any further necessary catalytic upgrading.
APA, Harvard, Vancouver, ISO, and other styles
35

Bender, Matthias, and Jens Christoffers. "Investigations into the Regioselectivity of Fischer Indole and Friedländer Quinoline Syntheses with Octahydroisobenzofuran and Octahydroisoindole Derivatives." Zeitschrift für Naturforschung B 66, no. 12 (December 1, 2011): 1209–18. http://dx.doi.org/10.1515/znb-2011-1203.

Full text
Abstract:
A Fischer indole synthesis with a cis-configurated octahydroisobenzofuran-6-one yielded exclusively a furo[3,4-c]carbazole derivative as the product of a regioselective angular annulation reaction. A Friedländer quinoline synthesis from the same substrate gave a mixture of angular and linear annulation products, i. e. furo[3,4-a]acridine and furo[3,4-b]acridine derivatives. When submitting a mixture of cis- and trans-octahydroisoindole derivatives to Fischer and Friedländer syntheses, the trans-starting material gave regioselectively linear annulation products, i. e. pyrrolo[3,4-b]carbazole and pyrrolo[3,4-b]acridine derivatives. In contrast, the respective cis-configurated isoindole gavemixtures of angular and linear annulation products. The constitutions and relative configurations of nine new indole and quinoline derivatives were established by 2D NMR experiments and X-ray singlecrystal investigations.
APA, Harvard, Vancouver, ISO, and other styles
36

Zhao, Hong Xia, and Hai Liang Lü. "Effect of La Promotion on Co/ZrO2 Catalysts in Fischer-Tropsch Synthesis." Advanced Materials Research 850-851 (December 2013): 124–27. http://dx.doi.org/10.4028/www.scientific.net/amr.850-851.124.

Full text
Abstract:
The effects of lanthanum promotion on cobalt based catalysts in Fischer-Tropsch synthesis were investigated. The Co/ZrO2 catalysts promoted by lanthanum had higher activity and selectivity in Fischer-Tropsch synthesis. The catalyst with the La content 1% had the highest activity and selectivity attributed to the promotion effect of La. However, excessive La addition could depress the activity of the catalyst due to the Co-La interaction and the lower reduction degree.
APA, Harvard, Vancouver, ISO, and other styles
37

Xue, Yingying, Jiaqiang Sun, Mohamed Abbas, Zheng Chen, Pengfei Wang, Yilong Chen, and Jiangang Chen. "Substrate-induced hydrothermal synthesis of hematite superstructures and their Fischer–Tropsch synthesis performance." New Journal of Chemistry 43, no. 8 (2019): 3454–61. http://dx.doi.org/10.1039/c8nj05691a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Han, Zhonghao, Weixin Qian, Hongfang Ma, Haitao Zhang, Qiwen Sun, and Weiyong Ying. "Effects of Sm on Fe–Mn catalysts for Fischer–Tropsch synthesis." RSC Advances 9, no. 55 (2019): 32240–46. http://dx.doi.org/10.1039/c9ra05337a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

IWASAWA, Nobuharu. "Fischer-type Carbene Complexes in Organic Synthesis." Journal of Synthetic Organic Chemistry, Japan 56, no. 5 (1998): 413–23. http://dx.doi.org/10.5059/yukigoseikyokaishi.56.413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Zhi-Pan, and P. Hu. "A New Insight into Fischer−Tropsch Synthesis." Journal of the American Chemical Society 124, no. 39 (October 2002): 11568–69. http://dx.doi.org/10.1021/ja012759w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jess, A., R. Popp, and K. Hedden. "Fischer–Tropsch-synthesis with nitrogen-rich syngas." Applied Catalysis A: General 186, no. 1-2 (October 1999): 321–42. http://dx.doi.org/10.1016/s0926-860x(99)00152-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pinna, D. "Wax composition transients during Fischer–Tropsch synthesis." Journal of Catalysis 214, no. 2 (March 10, 2003): 251–60. http://dx.doi.org/10.1016/s0021-9517(02)00151-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hutchins, Steven M., and Kevin T. Chapman. "Fischer indole synthesis on a solid support." Tetrahedron Letters 37, no. 28 (July 1996): 4869–72. http://dx.doi.org/10.1016/0040-4039(96)00997-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Adjé, N., F. Vogeleisen, and D. Uguen. "Improved conditions for the Kiliani-Fischer synthesis." Tetrahedron Letters 37, no. 33 (August 1996): 5893–96. http://dx.doi.org/10.1016/0040-4039(96)01270-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ni, Yunyan, and Yongbin Jin. "Carbon isotopic fractionations during Fischer-Tropsch synthesis." Petroleum Exploration and Development 38, no. 2 (April 2011): 249–56. http://dx.doi.org/10.1016/s1876-3804(11)60031-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Andrews, David M., Jean-Claude Arnould, Pascal Boutron, Bénédicte Délouvrie, Christian Delvare, Kevin M. Foote, Annie Hamon, et al. "Fischer synthesis of isomeric thienopyrrole LHRH antagonists." Tetrahedron 65, no. 29-30 (July 2009): 5805–16. http://dx.doi.org/10.1016/j.tet.2009.05.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jager, B., and R. Espinoza. "Advances in low temperature Fischer-Tropsch synthesis." Catalysis Today 23, no. 1 (January 1995): 17–28. http://dx.doi.org/10.1016/0920-5861(94)00136-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Egaña, Ane, Oihane Sanz, David Merino, Xabier Moriones, and Mario Montes. "Fischer–Tropsch Synthesis Intensification in Foam Structures." Industrial & Engineering Chemistry Research 57, no. 31 (July 13, 2018): 10187–97. http://dx.doi.org/10.1021/acs.iecr.8b01492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Merlic, Craig A., and Feng Wu. "Synthesis of β-keto Fischer carbene complexes." Journal of Organometallic Chemistry 553, no. 1-2 (February 1998): 183–91. http://dx.doi.org/10.1016/s0022-328x(97)00593-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Durham, Ed, Rui Xu, Sihe Zhang, Mario R. Eden, and Christopher B. Roberts. "Supercritical Adiabatic Reactor for Fischer–Tropsch Synthesis." Industrial & Engineering Chemistry Research 52, no. 9 (October 19, 2012): 3133–36. http://dx.doi.org/10.1021/ie3008677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography