Academic literature on the topic 'Fischer-Tropsch reaction water'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fischer-Tropsch reaction water.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fischer-Tropsch reaction water"
Zhao, Yufei, Geoffrey I. N. Waterhouse, Guangbo Chen, Xuyang Xiong, Li-Zhu Wu, Chen-Ho Tung, and Tierui Zhang. "Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks." Chemical Society Reviews 48, no. 7 (2019): 1972–2010. http://dx.doi.org/10.1039/c8cs00607e.
Full textPour, Ali Nakhaei, and Mohammadreza Housaindokht. "Effects of metallic cobalt crystal phase on catalytic activity of cobalt catalysts supported on carbon nanotubes in Fischer–Tropsch synthesis." Progress in Reaction Kinetics and Mechanism 44, no. 4 (July 25, 2019): 316–23. http://dx.doi.org/10.1177/1468678319862438.
Full textMordkovich, Vladimir Z., and Lilia V. Sineva. "Water-Zeolite Interfaces for Controlling Reaction Routes in Fischer- Tropsch Synthesis of Alternative Fuels." Current Catalysis 9, no. 1 (September 10, 2020): 3–22. http://dx.doi.org/10.2174/2211544709999200420072505.
Full textYu, Ge Wen, Yan Ming Wang, and Yuan Yuan Xu. "Modeling Analysis of Shell, Texaco Gasification Technology’s Effects on Water Gas Shift for Fischer-Tropsch Process." Advanced Materials Research 608-609 (December 2012): 1446–53. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.1446.
Full textWilliams, Harrison, Muthu K. Gnanamani, Gary Jacobs, Wilson D. Shafer, and David Coulliette. "Fischer–Tropsch Synthesis: Computational Sensitivity Modeling for Series of Cobalt Catalysts." Catalysts 9, no. 10 (October 15, 2019): 857. http://dx.doi.org/10.3390/catal9100857.
Full textCoronado, Irene, Aitor Arandia, Matti Reinikainen, Reetta Karinen, Riikka L. Puurunen, and Juha Lehtonen. "Kinetic Modelling of the Aqueous-Phase Reforming of Fischer-Tropsch Water over Ceria-Zirconia Supported Nickel-Copper Catalyst." Catalysts 9, no. 11 (November 8, 2019): 936. http://dx.doi.org/10.3390/catal9110936.
Full textBukur, Dragomir B., Branislav Todic, and Nimir Elbashir. "Role of water-gas-shift reaction in Fischer–Tropsch synthesis on iron catalysts: A review." Catalysis Today 275 (October 2016): 66–75. http://dx.doi.org/10.1016/j.cattod.2015.11.005.
Full textTENG, B., J. CHANG, J. YANG, G. WANG, C. ZHANG, Y. XU, H. XIANG, and Y. LI. "Water gas shift reaction kinetics in Fischer?Tropsch synthesis over an industrial Fe?Mn catalyst." Fuel 84, no. 7-8 (May 2005): 917–26. http://dx.doi.org/10.1016/j.fuel.2004.12.007.
Full textMa, Jin Qiang, Ye Xu, Yuan Feng Xu, Hui Li, He Xing Li, Ping Li, and Xing Gui Zhou. "Aqueous-Phase Reforming of Ethylene Glycol to Hydrogen on Supported Pt Catalysts." Advanced Materials Research 347-353 (October 2011): 2511–14. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.2511.
Full textEkstrom, A., and J. A. Lapszewicz. "The reactions of cobalt surface carbides with water and their implications for the mechanism of the Fischer-Tropsch reaction." Journal of Physical Chemistry 91, no. 17 (August 1987): 4514–19. http://dx.doi.org/10.1021/j100301a019.
Full textDissertations / Theses on the topic "Fischer-Tropsch reaction water"
Van, Zyl Pierrie Jakobus. "Anaerobic digestion of Fischer-Tropsch reaction water : submerged membrane anaerobic reactor design, performance evaluation & modeling." Doctoral thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/4994.
Full textBiel, Herbert Benjamin. "The effect of water partial pressure on low temperature iron Fischer-Tropsch reaction rate, selectivity and catalyst structure." Master's thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/5351.
Full textThe Fischer-Tropsch synthesis catalysed by iron is a well-established process for the production of synthetic fuels, waxes and many other chemicals, yet there are many aspects that are still not totally understood. Controversy still exists as to what the active phase(s) is of the iron Fischer-Tropsch catalyst. A big drawback of the iron based Fischer-Tropsch synthesis is that one of its primary products, wate, changes the structure and stability of the catalyst. Little is know about the effect that water partial pressure has on the phases present in the working catalyst.
Hallac, Basseem Bishara. "Kinetic Experimental and Modeling Studies on Iron-Based Catalysts Promoted with Lanthana for the High-Temperature Water-Gas Shift Reaction Characterized with Operando UV-Visible Spectroscopy and for the Fischer-Tropsch Synthesis." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4271.
Full textSwabey, Katharine Gaenor Aske. "Evaluation of fluidised-bed reactors for the biological treatment of synthol reaction water, a high-strength COD petrochemical effluent / by Katharine Gaenor Aske Swabey." Thesis, North-West University, 2004. http://hdl.handle.net/10394/452.
Full textThesis (M. Omgewingswetenskappe)--North-West University, Potchefstroom Campus, 2004.
Escorihuela, Roca Sara. "Novel gas-separation membranes for intensified catalytic reactors." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/121139.
Full text[CAT] La present tesi doctoral es centra en el desenvolupament de noves membranes de separació de gasos, així com el seu ús in-situ en reactors catalítics de membrana per a la intensificació de processos. Per a aquest propòsit, s'han sintetitzat diversos materials, com a polímers per a la fabricació de membranes, catalitzadors tant per a la metanació del CO2 com per a la reacció de síntesi de Fischer-Tropsch, i diverses partícules inorgàniques nanomètriques per al seu ús en membranes de matriu mixta. Referent a la fabricació de les membranes, la tesi aborda principalment dos tipus: orgàniques i inorgàniques. Respecte a les membranes orgàniques, diferents materials polimèrics s'ha considerat com a candidats prometedors, tant per a la capa selectiva de la membrana, així com com a suport d'aquesta. S'ha treballat amb poliimides, ja que són materials amb temperatures de transició vítria molt alta, per al seu posterior ús en reaccions industrials que tenen lloc entre 250-300 °C. Per a aconseguir membranes molt permeables, mantenint una bona selectivitat, és necessari obtindre capes selectives de menys d'una micra. Emprant com a material de suport altre tipus de polímer, no és necessari estudiar la compatibilitat entre ells, sent menys complexa l'obtenció de capes fines. En canvi, si el suport és de tipus inorgànic, un exhaustiu estudi de la relació entre la concentració i la viscositat de la solució polimèrica és altament necessari. Diverses partícules inorgàniques nanomètriques es van estudiar per a afavorir la permeació d'aigua a través dels materials polimèrics. En segon lloc, quant a membranes inorgàniques, es va realitzar la funcionalització d'una membrana de pal¿ladi per a afavorir la permeació d'hidrogen i evitar la contaminació per monòxid de carboni. El motiu pel qual es va dopar amb un altre metall la capa selectiva de la membrana metàl¿lica va ser per a poder emprar-la en un reactor de Fischer-Tropsch. En relació amb el disseny i fabricació dels reactors, durant aquesta tesi, es va desenvolupar el prototip d'un microreactor per a la metanació de CO2, on una membrana polimèrica de capa fina selectiva a l'aigua es va integrar per a així evitar la desactivació del catalitzador i al seu torn desplaçar l'equilibri i augmentar la conversió de CO2. D'altra banda, un reactor de Fischer-Tropsch va ser redissenyat per a poder introduir una membrana metàl¿lica selectiva a l'hidrogen i poder injectar-lo de manera controlada. D'aquesta manera, i seguint estudis previs, el objectiu va ser millorar la selectivitat als productes desitjats mitjançant el hidrocraqueix i la hidroisomerització d'olefines i parafines amb l'ajuda de l'alta pressió parcial d'hidrogen.
[EN] The present thesis is focused on the development of new gas-separation membranes, as well as their in-situ integration on catalytic membrane reactors for process intensification. For this purpose, several materials have been synthesized such as polymers for membrane manufacture, catalysts for CO2 methanation and Fischer-Tropsch synthesis reaction, and inorganic materials in form of nanometer-sized particles for their use in mixed matrix membranes. Regarding membranes manufacture, this thesis deals mainly with two types: organic and inorganic. With regards to the organic membranes, different polymeric materials have been considered as promising candidates, both for the selective layer of the membrane, as well as a support thereof. Polyimides have been selected since they are materials with very high glass transition temperatures, in order to be used in industrial reactions which take place at temperatures around 250-300 ºC. To obtain highly permeable membranes, while maintaining a good selectivity, it is necessary to develop selective layers of less than one micron. Using another type of polymer as support material, it is not necessary to study the compatibility between membrane and support. On the other hand, if the support is inorganic, an exhaustive study of the relation between the concentration and the viscosity of the polymer solution is highly necessary. In addition, various inorganic particles were studied to favor the permeation of water through polymeric materials. Secondly, as regards to inorganic membranes, the functionalization of a palladium membrane to favor the permeation of hydrogen and avoid carbon monoxide contamination was carried out. The membrane selective layer was doped with another metal in order to be used in a Fischer-Tropsch reactor. Regarding the design and manufacture of the reactors used during this thesis, a prototype of a microreactor for CO2 methanation was carried out, where a thin-film polymer membrane selective to water was integrated to avoid the deactivation of the catalyst and to displace the equilibrium and increase the CO2 conversion. On the other hand, a Fischer-Tropsch reactor was redesigned to introduce a hydrogen-selective metal membrane and to be able to inject it in a controlled manner. In this way, and following previous studies, the aim is to enhance the selectivity to the target products by hydrocracking and hydroisomerization the olefins and paraffins assisted by the presence of an elevated partial pressure of hydrogen.
I would like to acknowledge the Spanish Government, for funding my research with the Severo Ochoa scholarship.
Escorihuela Roca, S. (2019). Novel gas-separation membranes for intensified catalytic reactors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/121139
TESIS
Lees, Crispian McLintock. "Dynamic modelling of anaerobic digestion of Fischer-Tropsch reaction water." Thesis, 2013. http://hdl.handle.net/10413/11273.
Full textThesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.
Gokhale, Amit A. "Water gas shift reaction and Fischer Tropsch Synthesis on transition metal surfaces." 2005. http://catalog.hathitrust.org/api/volumes/oclc/65283002.html.
Full textRoopan, Renésha. "Investigation into the effect of stripped gas liquor on the anaerobic digestion of Fischer-Tropsch reaction water." Thesis, 2014. http://hdl.handle.net/10413/11328.
Full textM.Sc.Eng. University of KwaZulu-Natal, Durban 2014.
Book chapters on the topic "Fischer-Tropsch reaction water"
Gallo-Cordova, Alvaro, Daniela Almeida Streitwieser, María del Puerto Morales, and Jesús G. Ovejero. "Magnetic Iron Oxide Colloids for Environmental Applications." In Colloids - Types, Preparation and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95351.
Full textConference papers on the topic "Fischer-Tropsch reaction water"
Wang, Xun, and Yunhan Xiao. "Predicting the Performance of System for the Co-Production of Fischer-Tropsch Synthetic Liquid and Power From Coal." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27693.
Full textDoty, F. David, Glenn N. Doty, John P. Staab, and Laura L. Holte. "Toward Efficient Reduction of CO2 to CO for Renewable Fuels." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90362.
Full textSabnis, Sandeep P., and Srinivas Seethamraju. "Dry Reforming of Biogas to Syngas: An Eco-Friendly Renewable Fuel for I C Engines." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24559.
Full textHolte, Laura L., Glenn N. Doty, David L. McCree, Judy M. Doty, and F. David Doty. "Sustainable Transportation Fuels From Off-Peak Wind Energy, CO2, and Water." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90366.
Full textDoty, F. David, Laura Holte, and Siddarth Shevgoor. "Securing Our Transportation Future by Using Off-Peak Wind Energy to Recycle CO2 Into Fuels." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90182.
Full textMcCormick, John L. "High Temperature Reactor: Driving Force to Convert CO2 to Fuel." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58132.
Full textPanicker, Philip K., and Amani Magid. "Microwave Plasma Gasification for the Restoration of Urban Rivers and Lakes, and the Elimination of Oceanic Garbage Patches." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59632.
Full text