Academic literature on the topic 'Fisher information matrix (FIM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fisher information matrix (FIM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fisher information matrix (FIM)"
Jagannatham, Aditya K., and Bhaskar D. Rao. "Fisher-Information-Matrix Based Analysis of Semiblind MIMO Frequency Selective Channel Estimation." ISRN Signal Processing 2011 (September 7, 2011): 1–13. http://dx.doi.org/10.5402/2011/758918.
Full textKarakida, Ryo, Shotaro Akaho, and Shun-ichi Amari. "Pathological Spectra of the Fisher Information Metric and Its Variants in Deep Neural Networks." Neural Computation 33, no. 8 (July 26, 2021): 2274–307. http://dx.doi.org/10.1162/neco_a_01411.
Full textQin, Bo Ying, and Xian Kun Lin. "Optimal Sensor Placement Based on Particle Swarm Optimization." Advanced Materials Research 271-273 (July 2011): 1108–13. http://dx.doi.org/10.4028/www.scientific.net/amr.271-273.1108.
Full textHuang, Li Xin, Xiang Wu Guo, Bo Tao Du, Xiao Jun Zhou, and Yu Yin Liu. "Optimal Measurement Placement for Material Parameter Identification of Orthotropic Composites by the Finite Element Method." Applied Mechanics and Materials 94-96 (September 2011): 1723–28. http://dx.doi.org/10.4028/www.scientific.net/amm.94-96.1723.
Full textWang, Xuezhi, Branko Ristic, Braham Himed, and Bill Moran. "Trajectory Optimisation for Cooperative Target Tracking with Passive Mobile Sensors." Signals 2, no. 2 (April 7, 2021): 174–88. http://dx.doi.org/10.3390/signals2020014.
Full textGogolev, I. V., and G. Yu Yashin. "Statistical Characteristics of Signal Parameter Estimation by Normalized Correlation Function Maximization." Journal of the Russian Universities. Radioelectronics, no. 3 (July 19, 2018): 15–22. http://dx.doi.org/10.32603/1993-8985-2018-21-3-15-22.
Full textQin, Bo Ying, and Xian Kun Lin. "Application of Integer-Coded Genetic Algorithm to Optimal Sensor Placement." Advanced Materials Research 271-273 (July 2011): 1114–19. http://dx.doi.org/10.4028/www.scientific.net/amr.271-273.1114.
Full textSalah, Mukhtar M., Essam A. Ahmed, Ziyad A. Alhussain, Hanan Haj Ahmed, M. El-Morshedy, and M. S. Eliwa. "Statistical inferences for type-II hybrid censoring data from the alpha power exponential distribution." PLOS ONE 16, no. 1 (January 20, 2021): e0244316. http://dx.doi.org/10.1371/journal.pone.0244316.
Full textFox, Zachary R., Gregor Neuert, and Brian Munsky. "Optimal Design of Single-Cell Experiments within Temporally Fluctuating Environments." Complexity 2020 (June 13, 2020): 1–15. http://dx.doi.org/10.1155/2020/8536365.
Full textViviescas, Álvaro, Gustavo Chio Cho, Oscar Begambre, Wilson Hernandez, and Carlos Alberto Riveros-Jerez. "Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing." Revista EIA 17, no. 34 (October 12, 2020): 1–12. http://dx.doi.org/10.24050/reia.v17i34.1296.
Full textDissertations / Theses on the topic "Fisher information matrix (FIM)"
Roy, Prateep Kumar. "Analysis & design of control for distributed embedded systems under communication constraints." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00534012.
Full textRoy, Prateep Kumar. "Analyse et conception de la commande des systèmes embarqués distribués sous des contraintes de communication." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00532883.
Full textPazman, Andrej. "Correlated optimum design with parametrized covariance function. Justification of the Fisher information matrix and of the method of virtual noise." Institut für Statistik und Mathematik, WU Vienna University of Economics and Business, 2004. http://epub.wu.ac.at/562/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Strömberg, Eric. "Faster Optimal Design Calculations for Practical Applications." Thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-150802.
Full textPanas, Dagmara. "Model-based analysis of stability in networks of neurons." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28883.
Full textPerez-Ramirez, Javier. "An Opportunistic Relaying Scheme for Optimal Communications and Source Localization." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581448.
Full textThe selection of relay nodes (RNs) for optimal communication and source location estimation is studied. The RNs are randomly placed at fixed and known locations over a geographical area. A mobile source senses and collects data at various locations over the area and transmits the data to a destination node with the help of the RNs. The destination node not only needs to collect the sensed data but also the location of the source where the data is collected. Hence, both high quality data collection and the correct location of the source are needed. Using the measured distances between the relays and the source, the destination estimates the location of the source. The selected RNs must be optimal for joint communication and source location estimation. We show in this paper how this joint optimization can be achieved. For practical decentralized selection, an opportunistic RN selection algorithm is used. Bit error rate performance as well as mean squared error in location estimation are presented and compared to the optimal relay selection results.
Perez-Ramirez, Javier. "Relay Selection for Multiple Source Communications and Localization." International Foundation for Telemetering, 2013. http://hdl.handle.net/10150/579585.
Full textRelay selection for optimal communication as well as multiple source localization is studied. We consider the use of dual-role nodes that can work both as relays and also as anchors. The dual-role nodes and multiple sources are placed at fixed locations in a two-dimensional space. Each dual-role node estimates its distance to all the sources within its radius of action. Dual-role selection is then obtained considering all the measured distances and the total SNR of all sources-to-destination channels for optimal communication and multiple source localization. Bit error rate performance as well as mean squared error of the proposed optimal dual-role node selection scheme are presented.
Maltauro, Tamara Cantú. "Algoritmo genético aplicado à determinação da melhor configuração e do menor tamanho amostral na análise da variabilidade espacial de atributos químicos do solo." Universidade Estadual do Oeste do Paraná, 2018. http://tede.unioeste.br/handle/tede/3920.
Full textMade available in DSpace on 2018-09-10T17:23:20Z (GMT). No. of bitstreams: 2 Tamara_Maltauro2018.pdf: 3146012 bytes, checksum: 16eb0e2ba58be9d968ba732c806d14c1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
It is essential to determine a sampling design with a size that minimizes operating costs and maximizes the results quality throughout a trial setting that involves the study of spatial variability of chemical attributes on soil. Thus, this trial aimed at resizing a sample configuration with the least possible number of points for a commercial area composed of 102 points, regarding the information on spatial variability of soil chemical attributes to optimize the process. Initially, Monte Carlo simulations were carried out, assuming Gaussian, isotropic, and exponential model for semi-variance function and three initial sampling configurations: systematic, simple random and lattice plus close pairs. The Genetic Algorithm (GA) was used to obtain simulated data and chemical attributes of soil, in order to resize the optimized sample, considering two objective-functions. They are based on the efficiency of spatial prediction and geostatistical model estimation, which are respectively: maximization of global accuracy precision and minimization of functions based on Fisher information matrix. It was observed by the simulated data that for both objective functions, when the nugget effect and range varied, samplings usually showed the lowest values of objectivefunction, whose nugget effect was 0 and practical range was 0.9. And the increase in practical range has generated a slight reduction in the number of optimized sampling points for most cases. In relation to the soil chemical attributes, GA was efficient in reducing the sample size with both objective functions. Thus, sample size varied from 30 to 35 points in order to maximize global accuracy precision, which corresponded to 29.41% to 34.31% of the initial mesh, with a minimum spatial prediction similarity to the original configuration, equal to or greater than 85%. It is noteworthy that such data have reflected on the optimization process, which have similarity between the maps constructed with sample configurations: original and optimized. Nevertheless, the sample size of the optimized sample varied from 30 to 40 points to minimize the function based on Fisher information matrix, which corresponds to 29.41% and 39.22% of the original mesh, respectively. However, there was no similarity between the constructed maps when considering the initial and optimum sample configuration. For both objective functions, the soil chemical attributes showed mild spatial dependence for the original sample configuration. And, most of the attributes showed mild or strong spatial dependence for optimum sample configuration. Thus, the optimization process was efficient when applied to both simulated data and soil chemical attributes.
É necessário determinar um esquema de amostragem com um tamanho que minimize os custos operacionais e maximize a qualidade dos resultados durante a montagem de um experimento que envolva o estudo da variabilidade espacial de atributos químicos do solo. Assim, o objetivo deste trabalho foi redimensionar uma configuração amostral com o menor número de pontos possíveis para uma área comercial composta por 102 pontos, considerando a informação sobre a variabilidade espacial de atributos químicos do solo no processo de otimização. Inicialmente, realizaram-se simulações de Monte Carlo, assumindo as variáveis estacionárias Gaussiana, isotrópicas, modelo exponencial para a função semivariância e três configurações amostrais iniciais: sistemática, aleatória simples e lattice plus close pairs. O Algoritmo Genético (AG) foi utilizado para a obtenção dos dados simulados e dos atributos químicos do solo, a fim de se redimensionar a amostra otimizada, considerando duas funções-objetivo. Essas estão baseadas na eficiência quanto à predição espacial e à estimação do modelo geoestatístico, as quais são respectivamente: a maximização da medida de acurácia exatidão global e a minimização de funções baseadas na matriz de informação de Fisher. Observou-se pelos dados simulados que, para ambas as funções-objetivo, quando o efeito pepita e o alcance variaram, em geral, as amostragens apresentaram os menores valores da função-objetivo, com efeito pepita igual a 0 e alcance prático igual a 0,9. O aumento do alcance prático gerou uma leve redução do número de pontos amostrais otimizados para a maioria dos casos. Em relação aos atributos químicos do solo, o AG, com ambas as funções-objetivo, foi eficiente quanto à redução do tamanho amostral. Para a maximização da exatidão global, tem-se que o tamanho amostral da nova amostra reduzida variou entre 30 e 35 pontos que corresponde respectivamente a 29,41% e a 34,31% da malha inicial, com uma similaridade mínima de predição espacial, em relação à configuração original, igual ou superior a 85%. Vale ressaltar que tais dados refletem no processo de otimização, os quais apresentam similaridade entres os mapas construídos com as configurações amostrais: original e otimizada. Todavia, o tamanho amostral da amostra otimizada variou entre 30 e 40 pontos para minimizar a função baseada na matriz de informaçãode Fisher, a qual corresponde respectivamente a 29,41% e 39,22% da malha original. Mas, não houve similaridade entre os mapas elaborados quando se considerou a configuração amostral inicial e a otimizada. Para ambas as funções-objetivo, os atributos químicos do solo apresentaram moderada dependência espacial para a configuração amostral original. E, a maioria dos atributos apresentaram moderada ou forte dependência espacial para a configuração amostral otimizada. Assim, o processo de otimização foi eficiente quando aplicados tanto nos dados simulados como nos atributos químicos do solo.
Achanta, Hema Kumari. "Optimal sensing matrices." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1421.
Full textBastian, Michael R. "Neural Networks and the Natural Gradient." DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/539.
Full textBooks on the topic "Fisher information matrix (FIM)"
Song, Zhen. Optimal Observation for Cyber-physical Systems: A Fisher-information-matrix-based Approach. London: Springer London, 2009.
Find full textChen, YangQuan, Zhen Song, Chellury R. Sastry, and Nazif C. Tas. Optimal Observation for Cyber-physical Systems: A Fisher-information-matrix-based Approach. Springer, 2014.
Find full textCheng, Russell. The Skew Normal Distribution. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0012.
Full textBook chapters on the topic "Fisher information matrix (FIM)"
Zhang, C. Y., H. X. Chen, M. S. Chen, and Z. H. Sun. "Image Matrix Fisher Discriminant Analysis (IMFDA)- 2D Matrix Based Face Image Retrieval Algorithm." In Advances in Web-Age Information Management, 894–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11563952_99.
Full textSakano, Hitoshi, Tsukasa Ohashi, Akisato Kimura, Hiroshi Sawada, and Katsuhiko Ishiguro. "Extended Fisher Criterion Based on Auto-correlation Matrix Information." In Lecture Notes in Computer Science, 409–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34166-3_45.
Full textKawai, R. "On Singularity of Fisher Information Matrix for Stochastic Processes Under High Frequency Sampling." In Numerical Mathematics and Advanced Applications 2011, 841–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33134-3_87.
Full textFurusho, Yasutaka, and Kazushi Ikeda. "Effects of Skip-Connection in ResNet and Batch-Normalization on Fisher Information Matrix." In Proceedings of the International Neural Networks Society, 341–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16841-4_35.
Full textBozdogan, Hamparsum. "Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix." In Information and Classification, 40–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-50974-2_5.
Full textLeonov, Sergei, and Alexander Aliev. "Approximation of the Fisher Information Matrix for Nonlinear Mixed Effects Models in Population PK/PD Studies." In Contributions to Statistics, 145–52. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00218-7_17.
Full textPoston, Wendy L., Carey E. Priebe, and O. Thomas Holland. "Maximizing the Fisher Information Matrix in Discrete-Time Systems." In Control and Dynamic Systems, 131–55. Elsevier, 1995. http://dx.doi.org/10.1016/s0090-5267(06)80017-4.
Full text"Multi-Sensor Management: Multi-Sensor Scheduling for Target Tracking Using Fisher Information Matrix Perturbation." In International Conference on Information Technology and Computer Science, 3rd (ITCS 2011), 174–77. ASME Press, 2011. http://dx.doi.org/10.1115/1.859742.paper43.
Full textConference papers on the topic "Fisher information matrix (FIM)"
Costa, S. I. R., S. A. Santos, and J. E. Strapasson. "Fisher information matrix and hyperbolic geometry." In IEEE Information Theory Workshop, 2005. IEEE, 2005. http://dx.doi.org/10.1109/itw.2005.1531851.
Full textALLAHDADIAN, SAEID, MICHAEL DÖHLER, CARLOS VENTURA, and LAURENT MEVEL. "Hierarchical Fisher-information-matrix-based Clustering." In Structural Health Monitoring 2019. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/shm2019/32478.
Full textWang, Zhan, and Gamini Dissanayake. "Observability analysis of SLAM using fisher information matrix." In 2008 10th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2008. http://dx.doi.org/10.1109/icarcv.2008.4795699.
Full textAgarwal, A. "Large N Matrix Models and Noncommutative Fisher Information." In THEORETICAL PHYSICS: MRST 2002: A Tribute to George Leibbrandt. AIP, 2002. http://dx.doi.org/10.1063/1.1524569.
Full textDas, Sonjoy, James C. Spall, and Roger Ghanem. "Efficient Monte Carlo computation of Fisher information matrix using prior information." In the 2007 Workshop. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1660877.1660912.
Full textLei, Ming, Christophe Baehr, and Pierre Del Moral. "Fisher information matrix-based nonlinear system conversion for state estimation." In 2010 8th IEEE International Conference on Control and Automation (ICCA). IEEE, 2010. http://dx.doi.org/10.1109/icca.2010.5524066.
Full textMishra, Vinod K. "Quantum fisher information matrix of a single qutrit in lambda configuration." In Quantum Information Science, Sensing, and Computation XIII, edited by Michael Hayduk and Eric Donkor. SPIE, 2021. http://dx.doi.org/10.1117/12.2587973.
Full textMeng, Lingyao, and James C. Spall. "Efficient computation of the Fisher information matrix in the EM algorithm." In 2017 51st Annual Conference on Information Sciences and Systems (CISS). IEEE, 2017. http://dx.doi.org/10.1109/ciss.2017.7926126.
Full textSpall, James C. "Improved methods for Monte Carlo estimation of the fisher information matrix." In 2008 American Control Conference (ACC '08). IEEE, 2008. http://dx.doi.org/10.1109/acc.2008.4586850.
Full textSanayei, Masoud, and Chitra N. Javdekar. "Sensor Placement for Parameter Estimation of Structures Using Fisher Information Matrix." In Seventh International Conference on Applications of Advanced Technologies in Transportation (AATT). Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40632(245)49.
Full textReports on the topic "Fisher information matrix (FIM)"
Ortiz, M. Analytical Methods of Approximating the Fisher Information Matrix for the Lognormal Distribution. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1557955.
Full text