Journal articles on the topic 'Fixed-Charge Problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fixed-Charge Problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lev, Benjamin, and Krzysztof Kowalski. "Modeling fixed-charge problems with polynomials." Omega 39, no. 6 (2011): 725–28. http://dx.doi.org/10.1016/j.omega.2011.02.006.
Full textAngulo, Gustavo, and Mathieu Van Vyve. "Fixed-charge transportation problems on trees." Operations Research Letters 45, no. 3 (2017): 275–81. http://dx.doi.org/10.1016/j.orl.2017.04.001.
Full textPadberg, M. W., T. J. Van Roy, and L. A. Wolsey. "Valid Linear Inequalities for Fixed Charge Problems." Operations Research 33, no. 4 (1985): 842–61. http://dx.doi.org/10.1287/opre.33.4.842.
Full textMolla-Alizadeh-Zavardehi, S. "Step Fixed Charge Transportation Problems via Genetic Algorithm." Indian Journal of Science and Technology 7, no. 7 (2014): 949–54. http://dx.doi.org/10.17485/ijst/2014/v7i7.5.
Full textLamar, Bruce W., and Chris A. Wallace. "Revised-Modified Penalties for Fixed Charge Transportation Problems." Management Science 43, no. 10 (1997): 1431–36. http://dx.doi.org/10.1287/mnsc.43.10.1431.
Full textHaberl, Josef. "Fixed-charge continuous knapsack problems and pseudogreedy solutions." Mathematical Programming 85, no. 3 (1999): 617–42. http://dx.doi.org/10.1007/s101070050074.
Full textADLAKHA, V., K. KOWALSKI, R. VEMUGANTI, and B. LEV. "More-for-less algorithm for fixed-charge transportation problems." Omega 35, no. 1 (2007): 116–27. http://dx.doi.org/10.1016/j.omega.2006.03.001.
Full textGhassemi Tari, Farhad, Zhrasadat Hashemi, and Tao Peng. "Three hybrid GAs for discounted fixed charge transportation problems." Cogent Engineering 5, no. 1 (2018): 1463833. http://dx.doi.org/10.1080/23311916.2018.1463833.
Full textHussein Farag, Hanan. "An Approach for Solving the Fixed Charge Transportation Problems." Journal of University of Shanghai for Science and Technology 23, no. 07 (2021): 583–90. http://dx.doi.org/10.51201/jusst/21/07187.
Full textSandrock, Keith. "A Simple Algorithm for Solving Small, Fixed-Charge Transportation Problems." Journal of the Operational Research Society 39, no. 5 (1988): 467. http://dx.doi.org/10.2307/2582361.
Full textDiaby, Moustapha. "Successive Linear Approximation Procedure for Generalized Fixed-Charge Transportation Problems." Journal of the Operational Research Society 42, no. 11 (1991): 991. http://dx.doi.org/10.2307/2583220.
Full textStallaert, Jan. "Valid inequalities and separation for capacitated fixed charge flow problems." Discrete Applied Mathematics 98, no. 3 (2000): 265–74. http://dx.doi.org/10.1016/s0166-218x(99)00164-x.
Full textM. ALTASSAN, KHALID, MAHMOUD M. EL-SHERBINY, ALY M. RAGAB, and BOKKASAM SASIDHAR. "A Heuristic Approach for Solving the Fixed Charge Transportation Problems." International Review of Management and Business Research 7, no. 2 (2018): 330–37. http://dx.doi.org/10.30543/7-2(2018)-3.
Full textAdlakha, Veena, and Krzysztof Kowalski. "A simple heuristic for solving small fixed-charge transportation problems." Omega 31, no. 3 (2003): 205–11. http://dx.doi.org/10.1016/s0305-0483(03)00025-2.
Full textSandrock, Keith. "A Simple Algorithm for Solving Small, Fixed-Charge Transportation Problems." Journal of the Operational Research Society 39, no. 5 (1988): 467–75. http://dx.doi.org/10.1057/jors.1988.80.
Full textDiaby, Moustapha. "Successive Linear Approximation Procedure for Generalized Fixed-Charge Transportation Problems." Journal of the Operational Research Society 42, no. 11 (1991): 991–1001. http://dx.doi.org/10.1057/jors.1991.189.
Full textRagsdale, Cliff T., and Patrick G. McKeown. "An algorithm for solving fixed-charge problems using surrogate constraints." Computers & Operations Research 18, no. 1 (1991): 87–96. http://dx.doi.org/10.1016/0305-0548(91)90045-s.
Full textRebennack, Steffen, Artyom Nahapetyan, and Panos M. Pardalos. "Bilinear modeling solution approach for fixed charge network flow problems." Optimization Letters 3, no. 3 (2009): 347–55. http://dx.doi.org/10.1007/s11590-009-0114-0.
Full textNg, Peh H., and Ronald L. Rardin. "Commodity family extended formulations of uncapacitated fixed charge network flow problems." Networks 30, no. 1 (1997): 57–71. http://dx.doi.org/10.1002/(sici)1097-0037(199708)30:1<57::aid-net7>3.0.co;2-k.
Full textKhang, Do Ba, and Okitsugu Fujiwara. "Approximate solutions of capacitated fixed-charge minimum cost network flow problems." Networks 21, no. 6 (1991): 689–704. http://dx.doi.org/10.1002/net.3230210606.
Full textLamar, Bruce W., Yosef Sheffi, and Warren B. Powell. "A Capacity Improvement Lower Bound for Fixed Charge Network Design Problems." Operations Research 38, no. 4 (1990): 704–10. http://dx.doi.org/10.1287/opre.38.4.704.
Full textBarr, Richard S., Fred Glover, Toby Huskinson, and Gary Kochenberger. "An extreme‐point tabu‐search algorithm for fixed‐charge network problems." Networks 77, no. 2 (2021): 322–40. http://dx.doi.org/10.1002/net.22020.
Full textPOP, PETRICA C., and CORINA POP SITAR. "New models of the generalized fixed-charge network design problem." Carpathian Journal of Mathematics 28, no. 1 (2012): 143–50. http://dx.doi.org/10.37193/cjm.2012.01.04.
Full textKannan, G., P. Senthil, P. Sasikumar, and V. P. Vinay. "A Nelder and Mead Methodology for Solving Small Fixed-Charge Transportation Problems." International Journal of Information Systems and Supply Chain Management 1, no. 4 (2008): 60–72. http://dx.doi.org/10.4018/jisscm.2008100104.
Full textMashford, J. S. "A method for the solution of fixed charge problems by Benders' decomposition." Optimization 21, no. 1 (1990): 101–7. http://dx.doi.org/10.1080/02331939008843523.
Full textNahapetyan, Artyom, and Panos Pardalos. "Adaptive dynamic cost updating procedure for solving fixed charge network flow problems." Computational Optimization and Applications 39, no. 1 (2007): 37–50. http://dx.doi.org/10.1007/s10589-007-9060-x.
Full textCosta, Alysson M. "A survey on benders decomposition applied to fixed-charge network design problems." Computers & Operations Research 32, no. 6 (2005): 1429–50. http://dx.doi.org/10.1016/j.cor.2003.11.012.
Full textGhassemi Tari, Farhad, and Zahrasadat Hashemi. "Prioritized K-mean clustering hybrid GA for discounted fixed charge transportation problems." Computers & Industrial Engineering 126 (December 2018): 63–74. http://dx.doi.org/10.1016/j.cie.2018.09.019.
Full textRaj, K. Antony Arokia Durai, and Chandrasekharan Rajendran. "A Hybrid Genetic Algorithm for Solving Single-Stage Fixed-Charge Transportation Problems." Technology Operation Management 2, no. 1 (2011): 1–15. http://dx.doi.org/10.1007/s13727-012-0001-2.
Full textGlover, Fred. "Parametric Ghost Image Processes for Fixed-Charge Problems: A Study of Transportation Networks." Journal of Heuristics 11, no. 4 (2005): 307–36. http://dx.doi.org/10.1007/s10732-005-2135-x.
Full textAtamtürk, Alper, Andrés Gómez, and Simge Küçükyavuz. "Three-partition flow cover inequalities for constant capacity fixed-charge network flow problems." Networks 67, no. 4 (2016): 299–315. http://dx.doi.org/10.1002/net.21677.
Full textSáez Aguado, Jesús. "Fixed Charge Transportation Problems: a new heuristic approach based on Lagrangean relaxation and the solving of core problems." Annals of Operations Research 172, no. 1 (2008): 45–69. http://dx.doi.org/10.1007/s10479-008-0483-2.
Full textSorokin, Alexey, Vladimir Boginski, Artyom Nahapetyan, and Panos M. Pardalos. "Computational risk management techniques for fixed charge network flow problems with uncertain arc failures." Journal of Combinatorial Optimization 25, no. 1 (2011): 99–122. http://dx.doi.org/10.1007/s10878-011-9422-2.
Full textGhosh, Shyamali, Sankar Kumar Roy, Ali Ebrahimnejad, and José Luis Verdegay. "Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem." Complex & Intelligent Systems 7, no. 2 (2021): 1009–23. http://dx.doi.org/10.1007/s40747-020-00251-3.
Full textHerer, Y. T., M. J. Rosenblatt, and I. Hefter. "Fast Algorithms for Single-Sink Fixed Charge Transportation Problems with Applications to Manufacturing and Transportation." Transportation Science 30, no. 4 (1996): 276–90. http://dx.doi.org/10.1287/trsc.30.4.276.
Full textGiri, Pravash Kumar, Manas Kumar Maiti, and Manoranjan Maiti. "Simulation approach to solve fuzzy fixed charge multi-item solid transportation problems under budget constraint." International Journal of Operational Research 32, no. 1 (2018): 56. http://dx.doi.org/10.1504/ijor.2018.091202.
Full textMaiti, Manoranjan, Pravash Kumar Giri, and Manas Kumar Maiti. "Simulation approach to solve fuzzy fixed charge multi-item solid transportation problems under budget constraint." International Journal of Operational Research 32, no. 1 (2018): 56. http://dx.doi.org/10.1504/ijor.2018.10012185.
Full textRardin, Ronald L., and Laurence A. Wolsey. "Valid inequalities and projecting the multicommodity extended formulation for uncapacitated fixed charge network flow problems." European Journal of Operational Research 71, no. 1 (1993): 95–109. http://dx.doi.org/10.1016/0377-2217(93)90263-m.
Full textSaharidis, Georgios K. D., Maria Boile, and Sotiris Theofanis. "Initialization of the Benders master problem using valid inequalities applied to fixed-charge network problems." Expert Systems with Applications 38, no. 6 (2011): 6627–36. http://dx.doi.org/10.1016/j.eswa.2010.11.075.
Full textKim, Dukwon, Xinyan Pan, and Panos M. Pardalos. "An Enhanced Dynamic Slope Scaling Procedure with Tabu Scheme for Fixed Charge Network Flow Problems." Computational Economics 27, no. 2-3 (2006): 273–93. http://dx.doi.org/10.1007/s10614-006-9028-4.
Full textLotfi, M. M., and R. Tavakkoli-Moghaddam. "A genetic algorithm using priority-based encoding with new operators for fixed charge transportation problems." Applied Soft Computing 13, no. 5 (2013): 2711–26. http://dx.doi.org/10.1016/j.asoc.2012.11.016.
Full textKatayama, Naoto. "MIP Neighborhood Search Heuristics for a Capacitated Fixed-Charge Network Design Problem." Asia-Pacific Journal of Operational Research 37, no. 03 (2020): 2050009. http://dx.doi.org/10.1142/s0217595920500098.
Full textMcKeown, Patrick G., and Cliff T. Racsdale. "A computational study of using preprocessing and stronger formulations to solve large general fixed charge problems." Computers & Operations Research 17, no. 1 (1990): 9–16. http://dx.doi.org/10.1016/0305-0548(90)90023-z.
Full textКотов and P. Kotov. "CONSTRUCTIVE ASPECTS OF ELECTRODYNAMIC." Modeling of systems and processes 9, no. 1 (2016): 8–10. http://dx.doi.org/10.12737/21617.
Full textMadleňák, Radovan, Lucia Madleňáková, Jozef Štefunko, and Reiner Keil. "Multiple Approaches of Solving Allocation Problems on Postal Transportation Network in Conditions of Large Countries." Transport and Telecommunication Journal 17, no. 3 (2016): 222–30. http://dx.doi.org/10.1515/ttj-2016-0020.
Full textGlover, Fred, and Hanif D. Sherali. "Some Classes of Valid Inequalities and Convex Hull Characterizations for Dynamic Fixed-Charge Problems under Nested Constraints." Annals of Operations Research 140, no. 1 (2005): 215–33. http://dx.doi.org/10.1007/s10479-005-3972-6.
Full textHalder (Jana), Sharmistha, Barun Das, Goutam Panigrahi, and Manoranjan Maiti. "Some special fixed charge solid transportation problems of substitute and breakable items in crisp and fuzzy environments." Computers & Industrial Engineering 111 (September 2017): 272–81. http://dx.doi.org/10.1016/j.cie.2017.07.030.
Full textAktar, Md Samim, Manoranjan De, Sanat Kumar Mazumder, and Manoranjan Maiti. "Multi-Objective Green 4-dimensional transportation problems for breakable incompatible items with different fixed charge payment policies." Computers & Industrial Engineering 156 (June 2021): 107184. http://dx.doi.org/10.1016/j.cie.2021.107184.
Full textKazemi, Ahmad, Pierre Le Bodic, Andreas T. Ernst, and Mohan Krishnamoorthy. "New partial aggregations for multicommodity network flow problems: An application to the fixed-charge network design problem." Computers & Operations Research 136 (December 2021): 105505. http://dx.doi.org/10.1016/j.cor.2021.105505.
Full textSingh, Sungeeta, Renu Tuli, and Deepali Sarode. "A review on fuzzy and stochastic extensions of the multi index transportation problem." Yugoslav Journal of Operations Research 27, no. 1 (2017): 3–29. http://dx.doi.org/10.2298/yjor150417007s.
Full text