Academic literature on the topic 'Fixed frequency hysteretic control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fixed frequency hysteretic control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fixed frequency hysteretic control"
Awrejcewicz, J., and L. Dzyubak. "Modeling, chaotic behavior, and control of dissipation properties of hysteretic systems." Mathematical Problems in Engineering 2006 (2006): 1–21. http://dx.doi.org/10.1155/mpe/2006/94929.
Full textSong, Qing Shou. "A Hysteretic Current Controller for Active Power Filter (APF) with Constant Frequency." Advanced Materials Research 460 (February 2012): 308–12. http://dx.doi.org/10.4028/www.scientific.net/amr.460.308.
Full textZhang, Jun Li, Jian Zhuo Li, and Yu Ren Zhang. "Fixed Frequency Hysteresis Control Based STATCOM." Advanced Materials Research 383-390 (November 2011): 5936–39. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.5936.
Full textSabaghi, Masoud, Mohsen Dashtbayazi, and Saeid Marjani. "Dynamic Hysteresis Band Fixed Frequency Current Control." World Applied Programming 6, no. 1 (March 1, 2016): 1–4. http://dx.doi.org/10.21828/wap-06-01-001.
Full textSabaghi, Masoud, Mohsen Dashtbayazi, and Saeid Marjani. "Dynamic Hysteresis Band Fixed Frequency Current Control." World Applied Programming 6, no. 1 (March 1, 2016): 1–4. http://dx.doi.org/10.21828/wap0601.001.
Full textJia, Meng, Zhuochao Sun, and Liter Siek. "Fixed-frequency hysteretic buck converter with novel adaptive window control and transient response improvement." Journal of Engineering 2019, no. 7 (July 1, 2019): 4667–71. http://dx.doi.org/10.1049/joe.2018.5293.
Full textHoyerby, Mikkel C. W., and Michael A. E. Andersen. "Ultrafast Tracking Power Supply With Fourth-Order Output Filter and Fixed-Frequency Hysteretic Control." IEEE Transactions on Power Electronics 23, no. 5 (September 2008): 2387–98. http://dx.doi.org/10.1109/tpel.2008.2002038.
Full textZhang, Shuguang, Wenku Shi, and Zhiyong Chen. "Modeling and Parameter Identification of MR Damper considering Excitation Characteristics and Current." Shock and Vibration 2021 (April 7, 2021): 1–17. http://dx.doi.org/10.1155/2021/6691650.
Full textHu, Kai-Yu, Shih-Mei Lin, and Chien-Hung Tsai. "A Fixed-Frequency Quasi-${\rm V}^{2}$ Hysteretic Buck Converter With PLL-Based Two-Stage Adaptive Window Control." IEEE Transactions on Circuits and Systems I: Regular Papers 62, no. 10 (October 2015): 2565–73. http://dx.doi.org/10.1109/tcsi.2015.2466791.
Full textSu, Feng, Wing-Hung Ki, and Chi-Ying Tsui. "Ultra Fast Fixed-Frequency Hysteretic Buck Converter With Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications." IEEE Journal of Solid-State Circuits 43, no. 4 (April 2008): 815–22. http://dx.doi.org/10.1109/jssc.2008.917533.
Full textDissertations / Theses on the topic "Fixed frequency hysteretic control"
Repecho, del Corral Víctor. "Fixed-switching frequency sliding mode control applied to power converters." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/462164.
Full textLa aplicación del control en modo deslizante en el ámbito de la electrónica de potencia presente una problemática ampliamente conocida, obtener aplicaciones a frecuencia fija de operación. Es esta tesis se estudia el desarrollo de un comparador con histéresis variable encargado de regular el periodo de conmutación de controladores bajo regímenes deslizantes en convertidores de potencia. La estructura propuesta mide el periodo de conmutación de la señal de control y actualiza, de manera adecuada, la banda de histéresis del comparador a tal fin de regular la frecuencia de conmutación al valor deseado. La solución propuesta forma un segundo lazo de control, además del lazo de control principal que implementa el controlador en modo deslizante. En la primera parte de la tesis, éste segundo lazo es modelado, haciendo posible el estudio de las condiciones de estabilidad bajo realizaciones en tiempo continuo y en tiempo discreto. Además, se estudian las condiciones típicas de trabajo de los controladores utilizados en convertidores de potencia, como son los esquemas de regulación y de seguimiento de señales variantes en el tiempo. La segunda parte de la tesis se centra en evaluar, de manera experimental, los desarrollos teóricos de los controladores propuestos en convertidores de potencia. Concretamente, en la tesis se presentan los resultados experimentales obtenidos con diversos convertidores DC-DC y DC-AC. Adicionalmente, las metodologías y técnicas de implementación de los controladores son, de igual modo, ampliamente descritas.
Shih-MeiLin and 林詩梅. "Fast-Response Buck Converters with Current-Mode and Fixed-Frequency Hysteretic Control." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/56035144191444572790.
Full text國立成功大學
電機工程學系
102
This thesis is about the fixed-frequency fast-transient regulator. Based on control methods, the thesis can be divided into two parts: The first part focuses on the fast transient current-mode controlled buck converter. Through the systematic design procedure and analysis including the system modeling, compensator design, transistor level design, and chip implementation, the loop response is improved for better dynamic response. The design procedure is verified by the chip’s measurement results. The measurement results show that this converter can operate with load current from 200mA to 500mA in a supply voltage from 2.7 to 4.2V and the output voltage of 1.8V. The recovery time is about 10us and the highest efficiency is 93%. By the frequency domain measurement, the stability of proposed buck converter can be guaranteed. This converter is designed and fabricated with TSMC 2P4M 0.35μm CMOS process. The off chip inductor and the output capacitor are 4.7μH and 10μF. In the second part of this thesis, a fast transient quasi-V2 fixed-frequency hysteretic buck converter with wide load current range is proposed. This converter uses the phase-locked loop through the proposed Two Stage Window Control Circuit to stabilize the switching frequency. Under ultra-light load condition, this converter operates in PFM mode to reduce the switching loss and improve the light load efficiency. By the quasi-V2 technique, the inductor current information can be obtained without relying on large ESR of output capacitor to reduce the output ripple. This converter has been designed and fabricated by TSMC 2P4M 0.35μm CMOS process. The off chip inductor and the output capacitor are 2.2μH and 10uF. The measurement results show that this converter can operate with load current from 18mA-700mA in a supply voltage from 3.3-3.9V, and the output voltage of 1.2V. With the PLL, the switching frequency is maintained constant at 1MHz. The transient response time is about 5us and the highest efficiency is 95.6%.
Khan, Qadeer Ahmad. "Digitally assisted control techniques for high performance switching DC-DC converters." Thesis, 2012. http://hdl.handle.net/1957/30174.
Full textGraduation date: 2013
Access restricted to the OSU Community at author's request from June 25, 2012 - June 25, 2014
Hung-ChiehHou and 侯宏杰. "Fixed Frequency Hysteretic Controlled Buck Converter Using Differential and Near-Time-Optimal Techniques." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/g66j7u.
Full text國立成功大學
電機工程學系
106
This thesis proposes a capacitor-current based fixed frequency hysteretic controlled buck converter using near-optimum technique. To reduce the dependence on the equivalent series resistor (ESR) of output capacitor as well as power consumption while detecting the current information, the current is obtained from a derivative circuit which samples the output voltage. To decrease steady-state error, the error amplifier obtains error signal between the output voltage and reference voltage to adjust DC offset of output voltage. To stabilize the operation frequency in steady state, the derived ramp signal is adopted to refine the upper side of the hysteretic band. During load transient, the designed gain of error signal can decrease the overshoot and undershoot of output voltage and settling time. Testing results show that the designed circuit can restrict the switching frequency around 1MHz. The recovery time is less than 4µs for the 750mA load transient. The maximum efficiency of 92.5% is obtained at 150mA output current, while the maximum output current is 900mA.
"Fixed-frequency multi-mode multiple-output arbitrary-type DC-DC switching-mode power converters with variable-frequency control." Thesis, 2010. http://library.cuhk.edu.hk/record=b6075258.
Full textFirstly, a pseudo-PWM hysteresis voltage-mode buck converter is proposed. It achieves fast transient speed by the hysteresis control, estimable switching spectrum with a locking frequency and fast mode switching between PWM and PFM depending on the loading change. Measurement results show that the recovery time under the load transient is around 5mus, which is 5 times of the switching period. The boundary of the recovery time is defined by the value of the off-chip inductor.
Switching-mode power converter (SMPC) is an important circuit block in electronic systems. In the modem SMPC system, constant frequency voltage or current-mode control technique is commonly used. However, some limitations are raised due to some preliminary settings in the design. In this thesis, the switching frequency or period is no longer a constant but a design variable. Then, an additional frequency-control loop (FCL) is introduced in order to obtain a fixed frequency operation in the steady state. Three individual designs implemented with different types of FCL are proposed to verify the concept.
Then, a four-channel SIMO converter based on FCL is developed, together with auto-phase allocation technique. This circuit not only solves the problem of imbalance loading of different channels, but it also keeps the idle period of the inductor sufficient short in the full operation region. By combining with all channel controllers, FCL makes fast load transient response without degrading the power efficiency. Moreover, linear auto converter-type adaption technique is also used, which makes the converter surviving from a wide input range and output range. Measurement results show that the proposed converter can achieve a peak efficiency of 89%, a total output power of 1.46W, a load transient response time of less than 70muS, and an idle inductor period of <10%.
Zheng, Yanqi.
Adviser: Leung Ka Nang.
Source: Dissertation Abstracts International, Volume: 73-03, Section: B, page: .
Thesis (Ph.D.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references.
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Book chapters on the topic "Fixed frequency hysteretic control"
Guo, Zhiqiang, and Deshang Sha. "An Isolated Micro-converter Utilizing Fixed-Frequency BCM Control Method for PV Applications." In New Topologies and Modulation Schemes for Soft-Switching Isolated DC–DC Converters, 169–91. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9934-4_8.
Full textKai, Li, Li Jianbing, Zhou Dongfang, and Kai Zheng. "Fixed-Frequency Sliding Mode Control of Buck Converter Based on Differential Geometry Theory." In Proceedings of the 2015 International Conference on Communications, Signal Processing, and Systems, 843–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49831-6_87.
Full textWoafo, Paul, and Abobda Theodore Lejuste. "Modeling, Mathematical and Numerical Studies of a New Biventricular Model for Artificial Heart Powered by an Electromagnet Subjected to Sinusoidal and Square Voltages." In Biomedical Engineering, 172–98. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3158-6.ch007.
Full textStubberud, Peter A., and Cornelius T. Leondes. "Fixed Point Roundoff Effects in Frequency Sampling Filters." In Control and Dynamic Systems, 211–58. Elsevier, 1996. http://dx.doi.org/10.1016/s0090-5267(96)80042-9.
Full text"Appendix B: Fixed-Point Arithmetic and HDL Coding." In Digital Control of High-Frequency Switched-Mode Power Converters, 291–312. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119025498.app2.
Full textLei, Xiaoyan, Xinya Zhang, and Kun Luo. "Application Research of TMD on Low Frequency Vibration Control of Track Box Girder Structure." In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200213.
Full text"Indirect Power Control (IDPC) of DFIG Using Classical & Adaptive Controllers Under MPPT Strategy." In Improved Indirect Power Control (IDPC) of Wind Energy Conversion Systems (WECS), edited by Fayssal Amrane and Azeddine Chaiba, 26–85. BENTHAM SCIENCE PUBLISHERS, 2019. http://dx.doi.org/10.2174/9789811412677119010005.
Full textCHEBABHI, Ali. "A Novel IDPC using Suitable Controllers (Robust and Intelligent Controllers)." In Improved Indirect Power Control (IDPC) of Wind Energy Conversion Systems (WECS), 86–120. BENTHAM SCIENCE PUBLISHERS, 2019. http://dx.doi.org/10.2174/9789811412677119010006.
Full textConference papers on the topic "Fixed frequency hysteretic control"
Vahedi, H., E. Pashajavid, and K. Al-Haddad. "Fixed-band fixed-frequency hysteresis current control used In APFs." In IECON 2012 - 38th Annual Conference of IEEE Industrial Electronics (IECON2012). IEEE, 2012. http://dx.doi.org/10.1109/iecon.2012.6389110.
Full textRepecho, V., D. Biel, and E. Fossas. "Fixed switching frequency sliding mode control using an hysteresis band controller." In 2014 13th International Workshop on Variable Structure Systems (VSS). IEEE, 2014. http://dx.doi.org/10.1109/vss.2014.6881146.
Full textLacarbonara, Walter, Fabrizio Vestroni, and Danilo Capecchi. "Poincaré Map-Based Continuation of Periodic Orbits in Dynamic Discontinuous and Hysteretic Systems." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8088.
Full textVahedi, Hani, Yasser Rahmati Kukandeh, Mahsa Ghapandar Kashani, Aliakbar Dankoob, and Abdolreza Sheikholeslami. "Comparison of adaptive and fixed-band hysteresis current control considering high frequency harmonics." In 2011 IEEE Applied Power Electronics Colloquium (IAPEC). IEEE, 2011. http://dx.doi.org/10.1109/iapec.2011.5779858.
Full textAbdel-Rahim, Omar, Hirohito Funato, and Junnosuke Haruna. "Novel fixed frequency predictive hysteresis maximum power point tracking control for photovoltaic applications." In 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE 2015-ECCE Asia). IEEE, 2015. http://dx.doi.org/10.1109/icpe.2015.7168037.
Full textBadmus, O. O., S. Chowdhury, K. M. Eveker, and C. N. Nett. "Control-Oriented High-Frequency Turbomachinery Modeling: Single-Stage Compression System 1D Model." In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-018.
Full textLi, Jinghao, Aiguo Wu, and Ruiye Zhang. "Fixed-frequency Boundary Control of Buck Converter Based on Discrete Regulator of Hysteresis Band." In 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2018. http://dx.doi.org/10.1109/wcica.2018.8630351.
Full textKhan, Qadeer, Amr Elshazly, Sachin Rao, Rajesh Inti, and Pavan Kumar Hanumolu. "A 900mA 93% efficient 50µA quiescent current fixed frequency hysteretic buck converter using a highly digital hybrid voltage- and current-mode control." In 2012 IEEE Symposium on VLSI Circuits. IEEE, 2012. http://dx.doi.org/10.1109/vlsic.2012.6243850.
Full textChen, Zhang, Pengye Wang, Kang Liu, Zicheng Liu, and Dong Jang. "Fixed-frequency hysteresis controller for fault-tolerant control of six-phase permanent magnet synchronous motor." In 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). IEEE, 2021. http://dx.doi.org/10.1109/cieec50170.2021.9510297.
Full textWong, L. K., and T. K. Man. "Maximum frequency for hysteretic control COT buck converters." In 2008 13th International Power Electronics and Motion Control Conference (EPE/PEMC 2008). IEEE, 2008. http://dx.doi.org/10.1109/epepemc.2008.4635311.
Full text