Academic literature on the topic 'Flammes de diffusion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flammes de diffusion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flammes de diffusion"
Wang, H. Y., S. Rouvreau, P. Cordeiro, G. Legros, and P. Joulain. "Simulation numérique directe de flammes de diffusion laminaires en microgravité." Mécanique & Industries 5, no. 5 (September 2004): 607–12. http://dx.doi.org/10.1051/meca:2004063.
Full textRobin, Vincent, Arnaud Mura, Michel Champion, and Pierre Plion. "Modélisation de la combustion turbulente des mélanges hétérogènes en richesse : Des flammes de prémélange aux flammes de diffusion." Comptes Rendus Mécanique 337, no. 8 (August 2009): 596–602. http://dx.doi.org/10.1016/j.crme.2009.07.003.
Full textLaurent, Frédérique, Marc Massot, and Vitaly Volpert. "Propagation de flammes gazeuses dans la limite d'une diffusion massique nulle." Comptes Rendus Mathematique 335, no. 4 (January 2002): 405–10. http://dx.doi.org/10.1016/s1631-073x(02)02487-1.
Full textBan, H., S. Venkatesh, and K. Saito. "Convection-Diffusion Controlled Laminar Micro Flames." Journal of Heat Transfer 116, no. 4 (November 1, 1994): 954–59. http://dx.doi.org/10.1115/1.2911471.
Full textKim, J. S., F. A. Williams, and P. D. Ronney. "Diffusional-thermal instability of diffusion flames." Journal of Fluid Mechanics 327 (November 25, 1996): 273–301. http://dx.doi.org/10.1017/s0022112096008543.
Full textYao, Jiajie, Jiahao Liu, and Jian Wang. "Experimental Study of Coflow Propane—Air Laminar Diffusion Flames at Subatmospheric Pressures." Applied Sciences 11, no. 13 (June 27, 2021): 5979. http://dx.doi.org/10.3390/app11135979.
Full textBaker, John, Mark E. Calvert, and David W. Murphy. "Structure and Dynamics of Laminar Jet Micro-Slot Diffusion Flames." Journal of Heat Transfer 124, no. 4 (July 16, 2002): 783–90. http://dx.doi.org/10.1115/1.1482083.
Full textXie, Yu, Zhilong Wei, Teng Zhou, Haishen Zhen, Zihao Liu, and Zuohuang Huang. "Combustion Characteristics of Small Laminar Flames in an Upward Decreasing Magnetic Field." Energies 14, no. 7 (April 2, 2021): 1969. http://dx.doi.org/10.3390/en14071969.
Full textMcNesby, K. L., R. G. Daniel, J. M. Widder, and A. W. Miziolek. "Spectroscopic Investigation of Atmospheric-Pressure Counterflow Diffusion Flames Inhibited by Halons." Applied Spectroscopy 50, no. 1 (January 1996): 126–30. http://dx.doi.org/10.1366/0003702963906762.
Full textLi, X. "On the Scaling of the Visible Lengths of Jet Diffusion Flames." Journal of Energy Resources Technology 118, no. 2 (June 1, 1996): 128–33. http://dx.doi.org/10.1115/1.2792703.
Full textDissertations / Theses on the topic "Flammes de diffusion"
Maugendre, Mathieu. "Etude des particules de suie dans les flammes de kérosène et de diester." Thesis, Rouen, INSA, 2009. http://www.theses.fr/2009ISAM0016/document.
Full textSoot are carbonaceous fine particles, which diameters are ranged from a few nanometres to a few micrometers. They have an impact on climate, due to their radiative properties, as well as on health, due to their small size. That’s why particulate matter is an important concern. In order to gain a better understanding of the influence of the combustion devices, which implies specific residence time and also specific turbulence, oxidation and pressure properties, we studied three specific kinds of combustion : first, laminar diffusion flames at atmospheric pressure ; then, a laminar diffusion flame a high pressures (3 to 5 bar) ; finally, a turbulent flame produced in a combustor at high pressures (1,2 to 3 bar). Another objective of this work was to improve the knowledge about soot produced by the combustion of liquid fuels, namely kerosene and biofuel. We studied morphological properties (fractal dimension, primary particle size…) and the refractive index m* of soot produced by these combustion systems. The technique employed to characterize the soot refractive index is based on the analysis of a part of smokes produced by flames. These are transported towards two optical cells, so that extinction and scattering coefficients can be measured, in addition to soot size distributions. Furthermore, a morphological characterization of the aggregates is conducted, using transmission electron microscopy (TEM) photographs. Rayleigh-Debye-Gans theory for fractal aggregates is used to determine two functions of the refractive index E(m) and F(m), so that m* can be deduced
Belhi, Memdouh. "Simulation numérique de l’effet de champ électrique sur la stabilité des flammes de diffusion." Thesis, Rouen, INSA, 2012. http://www.theses.fr/2012ISAM0007/document.
Full textThe application of electric field is known to have the ability to improve significantly the flame stability. In this regard, a mathematical approach to model combustion in the presence of an electric field was developed. The Navier-Stokes equations along with transport equations for charged species and the electric potential Poisson’s equation are solved. A main situation, that concerns the stabilization of diffusion flames by applying a direct or alternating electric field, is studied. The results show that the presence of the electric field improves the flame stabilization. The magnitude of this improvement depends on the intensity and polarity of the applied voltage. If the applied voltage is alternating, an additional factor, which is the frequency of the electric current, influences also the extent of the flame stabilization improvement. An interpretation of the stabilization mechanisms is proposed
Ponty, Ludovic. "Application de la diffusion Rayleigh induite par laser à la caractérisation des fronts de flamme laminaire de prémélange H2/CH4/Air et H2/CO/Air." Phd thesis, Université d'Orléans, 2011. http://tel.archives-ouvertes.fr/tel-00647320.
Full textGa, Bui Van. "Contribution à l'étude des flammes pariétales turbulentes de diffusion." Ecully, Ecole centrale de Lyon, 1989. http://www.theses.fr/1989ECDL0011.
Full textKhaldi, Fouad. "Flammes de diffusion laminaires dans un gradient magnétique vertical." Grenoble INPG, 2004. http://www.theses.fr/2004INPG0054.
Full textWe report the results of an experimental and numerical study on the effect of a non-uniform magnetic field on a laminar diffusion flame in ambient air. We show that the impact of a vertical magnetic gradient on flame is similar to taht of gravity. Indeed, due to the difference of magnetic susceptibility of air and flame, a vertical magnetic gradient induces within flame an apparent gravity g*, measured relatively to earth gravity g by the coefficient G=g*/g. In g=0 (zero gravity), flame as the same hemispherical shape and the same blue colour of a diffusion flame at microgravity in drop towers. In g>1 (elevated gravity), the evolution of flame length is the same than that for flames at elevated gravity in centrifuges. Magnetic field allows to access to the range 0
Cléon, Guillaume. "Diffusion Raman spontanée pour l'étude de flammes cryotechniques haute pression." Rouen, 2007. http://www.theses.fr/2007ROUES076.
Full textDelhaye, Benoït. "Etude des flammes de diffusion turbulentes : simulations directes et modélisation." Châtenay-Malabry, Ecole centrale de Paris, 1994. http://www.theses.fr/1994ECAP0396.
Full textTirtoatmodjo, Rahardjo. "Caractérisation par pyrométrie polychromatographique des flammes de diffusion turbulentes monophasiques et diphasiques." Ecully, Ecole centrale de Lyon, 1993. http://www.theses.fr/1993ECDL0050.
Full textJoyeux, Daniel. "Etudes expérimentales et numériques de la production des suies dans des flammes de diffusion turbulentes." Rouen, 1993. http://www.theses.fr/1993ROUES049.
Full textLhuissier, Gavrovic Natalija. "Caractérisation de suies dans les flammes de prémélange par diffusion quasiélastique de la lumière." Rouen, 1987. http://www.theses.fr/1987ROUES020.
Full textBooks on the topic "Flammes de diffusion"
Ang, James Alfred. Perturbed boundary layer diffusion flames. Gaithersburg, MD: National Bureau of Standards, Dept. of Commerce, 1987.
Find full textMarch, S. R. Temperature and species concentration measurements in a swirled hydrogen diffusion flame. Washington, D. C: American Institute of Aeronautics and Astronautics, 1991.
Find full textBahadori, M. Yousef. Effects of buoyancy on gas jet diffusion flames. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Find full textLuppes, Roel. The numerical simulation of turbulent jets and diffusion flames. Eindhoven: University of Eindhoven, 2000.
Find full textWehrmeyer, Joseph A. Temperature and mixture fraction profiles in counterflow diffusion flames using linewise Raman imaging. Washington, D. C: AIAA, 1995.
Find full textJiang, L. Y. Prediction of axisymmetric turbulent diffusion flames and comparison with laser-Doppler velocimetry data. [Downsview, Ont.]: Institute for Aerospace Studies, 1987.
Find full textNandula, S. P. Simultaneous multi-species multi-point measurements in H2-air flames using a narrowband KrF excimer laser. Washington, D. C: American Institute of Aeronautics and Astronautics, 1992.
Find full textPitz, R. W. Comparison of reaction zones in turbulent lifted diffusion flames to stretched laminar flamelets. Washington, D.C: American Institute of Aeronautics and Astronautics, 1992.
Find full textGhoniem, Ahmed F. Vortex-scalar element calculations of a diffusion flame stabilized on a plane mixing layer. Cleveland, Ohio: Lewis Research Center, 1987.
Find full textSislian, Jean Pascal. Laser Doppler velocimetry investigation of the turbulence structure of axisymmetric diffusion flames. [Downsview, Ont.]: Institute for Aerospace Studies, 1986.
Find full textBook chapters on the topic "Flammes de diffusion"
Rangwala, Ali S. "Diffusion Flames." In SFPE Handbook of Fire Protection Engineering, 350–72. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2565-0_11.
Full textDate, Anil Waman. "Diffusion Flames." In Analytic Combustion, 235–62. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1853-9_9.
Full textMcAllister, Sara, Jyh-Yuan Chen, and A. Carlos Fernandez-Pello. "Non-premixed Flames (Diffusion Flames)." In Fundamentals of Combustion Processes, 139–54. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7943-8_7.
Full textWilliams, F. A. "Crocco Variables for Diffusion Flames." In Recent Advances in the Aerospace Sciences, 415–21. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4298-4_20.
Full textOhtake, K. "Structure of Turbulent Diffusion Flames." In Advanced Combustion Science, 1–36. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68228-8_1.
Full textOnuma, Y. "Modeling of Turbulent Diffusion Flames." In Advanced Combustion Science, 37–77. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68228-8_2.
Full textRoquemore, W. M., L. D. Chen, L. P. Goss, and W. F. Lynn. "The Structure of Jet Diffusion Flames." In Lecture Notes in Engineering, 49–63. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-9631-4_4.
Full textHall, R. J., and P. A. Bonczyk. "Radiation Tomography of Sooting Diffusion Flames." In Heat Transfer in Radiating and Combusting Systems, 254–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84637-3_15.
Full textDrummond, Phil. "Group Summary: Counter-Jet Diffusion Flames." In Transition, Turbulence and Combustion, 199–201. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1034-1_18.
Full textBoulanger, Joan, and Luc Vervisch. "Diffusion Edge-Flame Quenching." In IUTAM Symposium on Turbulent Mixing and Combustion, 161–68. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-1998-8_13.
Full textConference papers on the topic "Flammes de diffusion"
Fachini, Fernando. "Multicomponent Fuel Diffusion Flames: Flame Structure for Coupled Diffusion-Flame and Premixed-Flame Burning Regimes." In 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-550.
Full textCHEN, T., and L. GOSS. "Flame lifting and flame/flow interactions of jet diffusion flames." In 27th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-156.
Full textHermanson, J., R. Dugnani, and H. Johari. "Structure and flame length of fully-modulated, pulsed diffusion flames." In 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-561.
Full textSangras, R., J. Usowicz, J. Hermanson, and H. Johari. "Flame length and emissions of fully-modulated turbulent diffusion flames." In 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-188.
Full textHermanson, James, Mathieu Fregeau, and Dennis Stocker. "Flame Structure Dynamics and Buoyancy Effects in Pulsed Turbulent Diffusion Flames." In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1451.
Full textBastos-Netto, D. "Cylindrical diffusion laminar flames." In 31st Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-3115.
Full textChung, Joseph D., Xiao Zhang, Carolyn R. Kaplan, and Elaine S. Oran. "Low-Mach-Number Simulation of Diffusion Flames with the Chemical-Diffusive Model." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-2169.
Full textHermanson, J., R. Sangras, E. Ghaem-Maghami, H. Johari, D. Stocker, and U. Hegde. "Structure and flame length of fully-modulated, turbulent diffusion flames in microgravity." In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1076.
Full textTakahashi, Fumiaki, W. Schmoll, Darryl Trump, and Larry Goss. "Vortex-flame interactions and the local extinction of turbulent jet diffusion flames." In 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-139.
Full textTorii, Shuichi, Sze Man Simon Chan, and Toshiaki Yano. "Flame Blowoff Limit Phenomenon of Turbulent Jet Diffusion Flames With Annular Counterflow." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39059.
Full textReports on the topic "Flammes de diffusion"
Kokkala, M. A., and W. J. Rinkinen. Some observations on the shape impinging diffusion flames. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3505.
Full textKosaly, George, and J. J. Riley. Evaluation of Closure Models of Turbulent Diffusion Flames. Fort Belvoir, VA: Defense Technical Information Center, February 2000. http://dx.doi.org/10.21236/ada378388.
Full textCheatham, Sally A., and Elaine S. Oran. An Analysis of Lift-Off in Laminar Diffusion Flames. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada390042.
Full textLutz, A. E., R. J. Kee, J. F. Grcar, and F. M. Rupley. OPPDIF: A Fortran program for computing opposed-flow diffusion flames. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/568983.
Full textRumminger, Marc D., and Gregory T. Linteris. Numerical modeling of counterflow diffusion flames inhibited by iron pentacarbonyl. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6243.
Full textMukerji, S., J. M. McDonough, M. P. Menguec, S. Manickavasagam, and S. Chung. Chaotic map models of soot fluctuations in turbulent diffusion flames. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/676978.
Full textIm, H. G., J. H. Chen, and J. Y. Chen. Chemical response of methane/air diffusion flames to unsteady strain rate. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/671890.
Full textSuo-Anttila, Jill Marie, Timothy C. Williams, Christopher R. Shaddix, Kirk A. Jensen, Linda Gail Blevins, Sean Patrick Kearney, and Robert W. Schefer. Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/919645.
Full textEnomoto, Hiroshi, Shogo Kunioka, Lukas Kano Mangalla, and Noboru Hieda. Small Kerosene Droplet Evaporation Near Butane Diffusion Flame. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9116.
Full textWendt, J. O. L., W. C. Lin, and P. Mwabe. NO sub x destruction in diffusion flame environments. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/6240131.
Full text