To see the other types of publications on this topic, follow the link: Flash lamp annealing.

Journal articles on the topic 'Flash lamp annealing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Flash lamp annealing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Prucnal, S., L. Rebohle, and W. Skorupa. "Doping by flash lamp annealing." Materials Science in Semiconductor Processing 62 (May 2017): 115–27. http://dx.doi.org/10.1016/j.mssp.2016.10.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lehmann, J., N. Shevchenko, A. Mücklich, J. v. Borany, W. Skorupa, J. Schubert, J. M. J. Lopez, and S. Mantl. "Millisecond flash-lamp annealing of LaLuO3." Microelectronic Engineering 88, no. 7 (July 2011): 1346–48. http://dx.doi.org/10.1016/j.mee.2011.03.126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Habuka, Hitoshi, Akiko Hara, Takeshi Karasawa, and Masaki Yoshioka. "Heat Transport Analysis for Flash Lamp Annealing." Japanese Journal of Applied Physics 46, no. 3A (March 8, 2007): 937–42. http://dx.doi.org/10.1143/jjap.46.937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Budinov, H., V. Stavrov, and R. Burkova. "Flash Lamp Annealing of Phosphorus-Implanted Silicon." Physica Status Solidi (a) 114, no. 2 (August 16, 1989): K131—K134. http://dx.doi.org/10.1002/pssa.2211140242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kato, Shinichi, Yasuo Nara, Takayuki Aoyama, Takashi Onizawa, and Yuzuru Ohji. "Dopant Activation Phenomenon by Flash Lamp Annealing." ECS Transactions 13, no. 1 (December 18, 2019): 45–54. http://dx.doi.org/10.1149/1.2911484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

FUKUDA, Akira, Hirokuni HIYAMA, Kazuto HIROKAWA, Manabu TSUJIMURA, and Tetsuo FUKUDA. "20114 Thermal Stress Analysis of Flash Lamp Annealing." Proceedings of Conference of Kanto Branch 2006.12 (2006): 49–50. http://dx.doi.org/10.1299/jsmekanto.2006.12.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kissinger, G., D. Kot, M. A. Schubert, and A. Sattler. "Dislocation Generation and Propagation during Flash Lamp Annealing." ECS Journal of Solid State Science and Technology 4, no. 7 (2015): P195—P199. http://dx.doi.org/10.1149/2.0151507jss.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Terai, Fujio, Shigeki Matunaka, Akihiko Tauchi, Chikako Ichimura, Takao Nagatomo, and Tetsuya Homma. "Xenon Flash Lamp Annealing of Poly-Si Thin Films." Journal of The Electrochemical Society 153, no. 7 (2006): H147. http://dx.doi.org/10.1149/1.2200291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lysenko, V. S., V. I. Zimenko, I. P. Tyagulskii, I. N. Osiyuk, O. V. Snitko, and T. N. Sytenko. "Flash-lamp annealing of SiSiO2 transition layer defects." physica status solidi (a) 87, no. 2 (February 16, 1985): K175—K180. http://dx.doi.org/10.1002/pssa.2210870255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Prucnal, S., T. Shumann, W. Skorupa, B. Abendroth, K. Krockert, and H. J. Möller. "Solar Cell Emitters Fabricated by Flash Lamp Millisecond Annealing." Acta Physica Polonica A 120, no. 1 (July 2011): 30–34. http://dx.doi.org/10.12693/aphyspola.120.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Moon, S. J., K. M. Yu, S. H. Jeong, J. Y. Kim, B. K. Kim, H. J. Kim, E. J. Yun, and B. S. Bae. "Flash Lamp Annealing Effect on Stability of Oxide TFT." ECS Transactions 64, no. 10 (August 5, 2014): 109–13. http://dx.doi.org/10.1149/06410.0109ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pécz, B., L. Dobos, D. Panknin, W. Skorupa, C. Lioutas, and N. Vouroutzis. "Crystallization of amorphous-Si films by flash lamp annealing." Applied Surface Science 242, no. 1-2 (March 2005): 185–91. http://dx.doi.org/10.1016/j.apsusc.2004.08.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nazarov, A. N., V. S. Lysenko, S. A. Valiev, M. M. Lokshin, A. S. Tkachenko, and I. A. Kunitskii. "Flash Lamp Annealing and RF Plasma Annealing of AlSiO2Si Structures." physica status solidi (a) 120, no. 2 (August 16, 1990): 447–56. http://dx.doi.org/10.1002/pssa.2211200217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bakhteeva, N. D., A. L. Vasilyev, S. V. Kannykin, N. N. Kolobylina, and E. V. Todorova. "Evolution of amorphous Al85Ni5Fe7La3 alloy structure under flash lamp annealing." Perspektivnye Materialy, no. 8 (2018): 11–25. http://dx.doi.org/10.30791/1028-978x-2018-8-11-25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zechner, Christoph, Dmitri Matveev, Nikolas Zographos, Wilfried Lerch, and Silke Paul. "Simulation of dopant diffusion and activation during flash lamp annealing." Materials Science and Engineering: B 154-155 (December 2008): 20–23. http://dx.doi.org/10.1016/j.mseb.2008.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

McMahon, R. A., M. P. Smith, K. A. Seffen, M. Voelskow, W. Anwand, and W. Skorupa. "Flash-lamp annealing of semiconductor materials—Applications and process models." Vacuum 81, no. 10 (June 2007): 1301–5. http://dx.doi.org/10.1016/j.vacuum.2007.01.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ohdaira, Keisuke, Tomoko Fujiwara, Yohei Endo, Shogo Nishizaki, and Hideki Matsumura. "Explosive crystallization of amorphous silicon films by flash lamp annealing." Journal of Applied Physics 106, no. 4 (August 15, 2009): 044907. http://dx.doi.org/10.1063/1.3195089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ito, Takayuki, Toshihiko Iinuma, Atsushi Murakoshi, Haruko Akutsu, Kyoichi Suguro, Tsunetoshi Arikado, Katsuya Okumura, et al. "10–15 nm Ultrashallow Junction Formation by Flash-Lamp Annealing." Japanese Journal of Applied Physics 41, Part 1, No. 4B (April 30, 2002): 2394–98. http://dx.doi.org/10.1143/jjap.41.2394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bakhteeva, N. D., E. V. Todorova, S. V. Kannykin, A. L. Vasiliev, and N. N. Kolobylina. "Flash lamp annealing of amorphous Al-Fe-Ni-La alloys." Journal of Physics: Conference Series 1134 (November 2018): 012005. http://dx.doi.org/10.1088/1742-6596/1134/1/012005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wündisch, C., M. Posselt, B. Schmidt, V. Heera, T. Schumann, A. Mücklich, R. Grötzschel, et al. "Millisecond flash lamp annealing of shallow implanted layers in Ge." Applied Physics Letters 95, no. 25 (December 21, 2009): 252107. http://dx.doi.org/10.1063/1.3276770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yamada, Yoshiro, Takayuki Aoyama, Hajime Chino, Kensuke Hiraka, Juntaro Ishii, Satoru Kadoya, Shinichi Kato, et al. "In situSi Wafer Surface Temperature Measurement during Flash Lamp Annealing." Japanese Journal of Applied Physics 49, no. 4 (April 20, 2010): 04DA20. http://dx.doi.org/10.1143/jjap.49.04da20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ito, T., K. Suguro, M. Tamura, T. Taniguchi, Y. Ushiku, T. Iinuma, T. Itani, et al. "Low-resistance ultrashallow extension formed by optimized flash lamp annealing." IEEE Transactions on Semiconductor Manufacturing 16, no. 3 (August 2003): 417–22. http://dx.doi.org/10.1109/tsm.2003.815621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Brombacher, C., C. Schubert, M. Daniel, A. Liebig, G. Beddies, T. Schumann, W. Skorupa, J. Donges, S. Häberlein, and M. Albrecht. "Chemical ordering of FePt films using millisecond flash-lamp annealing." Journal of Applied Physics 111, no. 2 (January 15, 2012): 023902. http://dx.doi.org/10.1063/1.3677991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Andreadou, Ariadne, Jörg Pezoldt, Christian Förster, Efstathios K. Polychroniadis, M. Voelskow, and Wolfgang Skorupa. "Buckling Stabilization and Stress Reduction in SiC on Si by i-FLASiC Processing." Materials Science Forum 600-603 (September 2008): 239–42. http://dx.doi.org/10.4028/www.scientific.net/msf.600-603.239.

Full text
Abstract:
One of the main challenging tasks in the prospective technology is the buckling suppression of the 3C-SiC film due to the melting and solidification process and the stress relief as a consequence of the short time Si melting during the Flash Lamp Annealing. To overcome this effect and to stabilize a flat surface morphology an alternative i-FlASiC process was developed. This work refers to the influence of the layer stack modifications by doping and meltstop formation by ion implantation on the wafer buckling. The samples were studied by transmission electron microscopy, high resolution x-ray diffraction and infrared ellipsometry. The aim was to optimize the doping and flash lamp annealing conditions in relation to the i-FLASiC layer stack modification.
APA, Harvard, Vancouver, ISO, and other styles
25

Pezoldt, Jörg, Francisco M. Morales, Thomas Stauden, Christian Förster, Efstathios K. Polychroniadis, J. Stoemenos, D. Panknin, and Wolfgang Skorupa. "Growth Acceleration in FLASiC Assisted Short Time Liquid Phase Epitaxy by Melt Modification." Materials Science Forum 527-529 (October 2006): 295–98. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.295.

Full text
Abstract:
Flash lamp annealing of multilayer stack of the type SiC/Silicon overlayer(SOL)/SiC reduces the defect densities in the 3C-SiC/Si heteroepitaxial structure. Ge and C additions to the SOL lead to a substantial increase of the mass transfer from the upper layer to the lower SiC layer. If the Ge content of the SOL and the flash lamp annealing conditions are properly chosen a homogeneous layer with a 3C-SiC thickness between 150 and 200 nm can be achieved corresponding to a growth rate between 7.5 and 10.0 +m/s. The thickening of the lower layer depends on the SOL composition. Ge and/or C incorporation into the SOL and therefore into the Si melt enhances the mass transport from the upper SiC layer to the lower one.
APA, Harvard, Vancouver, ISO, and other styles
26

Tanimura, H., H. Kawarazaki, K. Fuse, M. Abe, Y. Ito, T. Aoyama, S. Kato, et al. "Germanium Junctions for Beyond-Si Node Using Flash Lamp Annealing (FLA)." MRS Advances 2, no. 51 (2017): 2921–26. http://dx.doi.org/10.1557/adv.2017.388.

Full text
Abstract:
ABSTRACTWe report on the formation of shallow junctions with high activation in both n+/p and p+/n Ge junctions using ion implantation and Flash Lamp Annealing (FLA). The shallowest junction depths (Xj) formed for the n+/p and p+/n junctions were 7.6 nm and 6.1 nm with sheet resistances (Rs) of 860 ohms/sq. and 704 ohms/sq., respectively. By reducing knocked-on oxygen during ion implantation in the n+/p junctions, Rs was decreased by between 5% and 15%. The lowest Rs observed was 235 ohms/sq. with a junction depth of 21.5 nm. Hall measurements clearly revealed that knocked-on oxygen degraded phosphorus activation (carrier concentration). In the p+/n Ge junctions, we show that ion implantation damage induced high boron activation. Using this technique, Rs can be reduced from 475 ohms/sq. to 349 ohms/sq. These results indicate that the potential for forming ultra-shallow n+/p and p+/n junctions in the nanometer range in Ge devices using FLA is very high, leading to realistic monolithically-integrated Ge CMOS devices that can take us beyond Si technology.
APA, Harvard, Vancouver, ISO, and other styles
27

Panknin, D., J. Stoemenos, M. Eickhoff, V. Heera, N. Vouroutzis, G. Krötz, and Wolfgang Skorupa. "Improvement of the 3C-SiC/Si Interface by Flash Lamp Annealing." Materials Science Forum 353-356 (January 2001): 151–54. http://dx.doi.org/10.4028/www.scientific.net/msf.353-356.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Skorupa, Wolfgang, Rossen A. Yankov, Wolfgang Anwand, Matthias Voelskow, Thoralf Gebel, Daniel F. Downey, and Edwin A. Arevalo. "Ultra-shallow junctions produced by plasma doping and flash lamp annealing." Materials Science and Engineering: B 114-115 (December 2004): 358–61. http://dx.doi.org/10.1016/j.mseb.2004.07.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lehmann, J., R. Hübner, J. V. Borany, W. Skorupa, T. Mikolajick, A. Schäfer, J. Schubert, and S. Mantl. "Millisecond flash lamp annealing for LaLuO3 and LaScO3 high-k dielectrics." Microelectronic Engineering 109 (September 2013): 381–84. http://dx.doi.org/10.1016/j.mee.2013.04.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mizoguchi, Kohji, Hiroshi Harima, Shin‐ichi Nakashima, and Tohru Hara. "Raman image study of flash‐lamp annealing of ion‐implanted silicon." Journal of Applied Physics 77, no. 7 (April 1995): 3388–92. http://dx.doi.org/10.1063/1.358628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Voelskow, Matthias, Rossen Yankov, Wolfgang Skorupa, Jörg Pezoldt, and Thomas Kups. "Buried melting in germanium implanted silicon by millisecond flash lamp annealing." Applied Physics Letters 93, no. 15 (October 13, 2008): 151903. http://dx.doi.org/10.1063/1.2993332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Skorupa, Wolfgang, Thoralf Gebel, Rossen A. Yankov, Silke Paul, Wilfried Lerch, Daniel F. Downey, and Edwin A. Arevalo. "Advanced Thermal Processing of Ultrashallow Implanted Junctions Using Flash Lamp Annealing." Journal of The Electrochemical Society 152, no. 6 (2005): G436. http://dx.doi.org/10.1149/1.1899268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Weller, Stephanie, and Manuela Junghähnel. "Flash Lamp Annealing of ITO thin films on ultra-thin glass." Vakuum in Forschung und Praxis 27, no. 4 (August 2015): 29–33. http://dx.doi.org/10.1002/vipr.201500586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Panckow, Andreas N., Clement David, and Jörg Weber. "Flash Lamp Annealing (FLA) of Magnetron Sputtered Low-Temperature TCO Coatings." Vakuum in Forschung und Praxis 29, no. 4 (August 2017): 21–25. http://dx.doi.org/10.1002/vipr.201700652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Weiss, Charlotte, Manuel Schnabel, Slawomir Prucnal, Johannes Hofmann, Andreas Reichert, Tobias Fehrenbach, Wolfgang Skorupa, and Stefan Janz. "Formation of silicon nanocrystals in silicon carbide using flash lamp annealing." Journal of Applied Physics 120, no. 10 (September 9, 2016): 105103. http://dx.doi.org/10.1063/1.4962262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bakhteeva, N. D., A. L. Vasiliev, S. V. Kannykin, N. N. Kolobylina, and E. V. Todorova. "Evolution of the Al85Ni5Fe7La3 Amorphous Alloy Structure under Flash Lamp Annealing." Inorganic Materials: Applied Research 10, no. 2 (March 2019): 260–70. http://dx.doi.org/10.1134/s2075113319020035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Havryliuk, Yevhenii, Oleksandr Selyshchev, Mykhailo Valakh, Alexandra Raevskaya, Oleksandr Stroyuk, Constance Schmidt, Volodymyr Dzhagan, and Dietrich R. T. Zahn. "Raman study of flash-lamp annealed aqueous Cu2ZnSnS4 nanocrystals." Beilstein Journal of Nanotechnology 10 (January 17, 2019): 222–27. http://dx.doi.org/10.3762/bjnano.10.20.

Full text
Abstract:
The effect of flash-lamp annealing (FLA) on the re-crystallization of thin films made of colloidal Cu2ZnSnS4 nanocrystals (NCs) is investigated by Raman spectroscopy. Unlike similar previous studies of NCs synthesized at high temperatures in organic solvents, NCs in this work, which have diameters as small as 2–6 nm, were synthesized under environmentally friendly conditions in aqueous solution using small molecules as stabilizers. We establish the range of FLA conditions providing an efficient re-crystallization in the thin film of NCs, while preserving their kesterite structure and improving their crystallinity remarkably. The formation of secondary phases at higher FLA power densities, as well as the dependence of the formation on the film thickness are also investigated. Importantly, no inert atmosphere for the FLA treatment of the NCs is required, which makes this technology even more suitable for mass production, in particular for printed thin films on flexible substrates.
APA, Harvard, Vancouver, ISO, and other styles
38

Chang, Young Jin, Jae Hwan Oh, Seong Hyun Jin, Se Hun Park, Min Hwan Choi, Won Kyu Lee, Jae Beom Choi, Hye Dong Kim, and Sang Soo Kim. "59.4: Rapid Dehydrogenation Technology of a-Si using Xe Flash-Lamp Annealing." SID Symposium Digest of Technical Papers 42, no. 1 (June 2011): 874–77. http://dx.doi.org/10.1889/1.3621474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Begeza, Viktor, Erik Mehner, Hartmut Stöcker, Yufang Xie, Alejandro García, Rene Hübner, Denise Erb, Shengqiang Zhou, and Lars Rebohle. "Formation of Thin NiGe Films by Magnetron Sputtering and Flash Lamp Annealing." Nanomaterials 10, no. 4 (March 31, 2020): 648. http://dx.doi.org/10.3390/nano10040648.

Full text
Abstract:
The nickel monogermanide (NiGe) phase is known for its electrical properties such as low ohmic and low contact resistance in group-IV-based electronics. In this work, thin films of nickel germanides (Ni–Ge) were formed by magnetron sputtering followed by flash lamp annealing (FLA). The formation of NiGe was investigated on three types of substrates: on amorphous (a-Ge) as well as polycrystalline Ge (poly-Ge) and on monocrystalline (100)-Ge (c-Ge) wafers. Substrate and NiGe structure characterization was performed by Raman, TEM, and XRD analyses. Hall Effect and four-point-probe measurements were used to characterize the films electrically. NiGe layers were successfully formed on different Ge substrates using 3-ms FLA. Electrical as well as XRD and TEM measurements are revealing the formation of Ni-rich hexagonal and cubic phases at lower temperatures accompanied by the formation of the low-resistivity orthorhombic NiGe phase. At higher annealing temperatures, Ni-rich phases are transforming into NiGe, as long as the supply of Ge is ensured. NiGe layer formation on a-Ge is accompanied by metal-induced crystallization and its elevated electrical resistivity compared with that of poly-Ge and c-Ge substrates. Specific resistivities for 30 nm Ni on Ge were determined to be 13.5 μΩ·cm for poly-Ge, 14.6 μΩ·cm for c-Ge, and 20.1 μΩ·cm for a-Ge.
APA, Harvard, Vancouver, ISO, and other styles
40

Panknin, D., T. Gebel, and Wolfgang Skorupa. "Flash Lamp Annealing of Implantation Doped p- and n-Type 6H-SiC." Materials Science Forum 353-356 (January 2001): 587–90. http://dx.doi.org/10.4028/www.scientific.net/msf.353-356.587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

OHDAIRA, Keisuke. "Formation of Polycrystalline Silicon Films for Solar Cells by Flash Lamp Annealing." Journal of the Vacuum Society of Japan 55, no. 12 (2012): 535–40. http://dx.doi.org/10.3131/jvsj2.55.535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Potzger, K., W. Anwand, H. Reuther, Shengqiang Zhou, G. Talut, G. Brauer, W. Skorupa, and J. Fassbender. "The effect of flash lamp annealing on Fe implanted ZnO single crystals." Journal of Applied Physics 101, no. 3 (February 2007): 033906. http://dx.doi.org/10.1063/1.2427103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kang, Chan-mo, Hoon Kim, Yeon-Wha Oh, Kyu-Ha Baek, and Lee-Mi Do. "High-Performance, Solution-Processed Indium-Oxide TFTs Using Rapid Flash Lamp Annealing." IEEE Electron Device Letters 37, no. 5 (May 2016): 595–98. http://dx.doi.org/10.1109/led.2016.2545692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Prucnal, S., F. Jiao, D. Reichel, K. Zhao, S. Cornelius, M. Turek, K. Pyszniak, et al. "Influence of Flash Lamp Annealing on the Optical Properties of CIGS Layer." Acta Physica Polonica A 125, no. 6 (June 2014): 1404–8. http://dx.doi.org/10.12693/aphyspola.125.1404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Xubin, Jordi Sastre, Abdessalem Aribia, Evgeniia Gilshtein, and Yaroslav E. Romanyuk. "Flash Lamp Annealing Enables Thin-Film Solid-State Batteries on Aluminum Foil." ACS Applied Energy Materials 4, no. 6 (June 17, 2021): 5408–14. http://dx.doi.org/10.1021/acsaem.1c01283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gelpey, Jeffrey C., Steve McCoy, Dave Camm, and Wilfried Lerch. "An Overview of ms Annealing for Deep Sub-Micron Activation." Materials Science Forum 573-574 (March 2008): 257–67. http://dx.doi.org/10.4028/www.scientific.net/msf.573-574.257.

Full text
Abstract:
Millisecond annealing (MSA) has been developed over the last several years as a viable approach to achieve the high electrical activation, limited diffusion and high abruptness needed for junctions in the sub-65nm regime. This paper will provide an overview of the technology including the motivation, technology and some process results. Both main approaches for MSA, sub-melt laser and flash lamp annealing will be discussed as well as the potential challenges to bring these technologies into mainstream manufacturing.
APA, Harvard, Vancouver, ISO, and other styles
47

Skorupa, Wolfgang. "Short Time Thermal Processing: From Electronics via Photonics to Pipe Organs of the 17th Century." Materials Science Forum 573-574 (March 2008): 417–28. http://dx.doi.org/10.4028/www.scientific.net/msf.573-574.417.

Full text
Abstract:
There is a clear and increasing interest in short time thermal processing far below one second, i.e. the lower limit of RTP (Rapid Thermal Processing) called spike annealing. It is the world of processing in the millisecond or nanosecond range. This was driven by the need of suppressing the so-called Transient Enhanced Diffusion in advanced boron-implanted shallow pnjunctions in the front-end silicon chip technology. Meanwhile the interest in flash lamp annealing (FLA) in the millisecond range spread out into other fields related to silicon technology and beyond. This paper reports shortly about the restart in flash lamp annealing of the Rossendorf group in collaboration with the Mattson group and further on recent experiments regarding shallow junction engineering in germanium, annealing of ITO (indium tin oxide) layers on glass and plastic foil to form an conductive layer as well as investigations which we did during the last years in the field of wide band gap semiconductor materials (SiC, ZnO). Moreover recent achievements in the field of silicon-based light emission basing on Metal-Oxide-Semiconductor Light Emitting Devices will be reported. Finally it will be demonstrated that the basic principle of short time thermal processing, i.e. surface heating on a colder bulk, features also advantages regarding the casting of lead sheets to produce organ pipes in the spirit of the 17th century.
APA, Harvard, Vancouver, ISO, and other styles
48

Prucnal, Slawomir, Jerzy Żuk, René Hübner, Juanmei Duan, Mao Wang, Krzysztof Pyszniak, Andrzej Drozdziel, Marcin Turek, and Shengqiang Zhou. "Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing." Materials 13, no. 6 (March 20, 2020): 1408. http://dx.doi.org/10.3390/ma13061408.

Full text
Abstract:
Controlled doping with an effective carrier concentration higher than 1020 cm−3 is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below −100 °C with ion flux less than 60 nAcm−2 and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process.
APA, Harvard, Vancouver, ISO, and other styles
49

Muydinov, Ruslan, Stefan Seeger, Sri Hari Bharath Vinoth Kumar, Carola Klimm, Ralph Kraehnert, Markus R. Wagner, and Bernd Szyszka. "Crystallisation behaviour of CH3NH3PbI3 films: The benefits of sub-second flash lamp annealing." Thin Solid Films 653 (May 2018): 204–14. http://dx.doi.org/10.1016/j.tsf.2018.03.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kim, Yoonsuk, Seungho Park, Seok Kim, Byung-Kuk Kim, Yujin Choi, Jin-Ha Hwang, and Hyoung June Kim. "Flash lamp annealing of indium tin oxide thin-films deposited on polyimide backplanes." Thin Solid Films 628 (April 2017): 88–95. http://dx.doi.org/10.1016/j.tsf.2017.03.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography