To see the other types of publications on this topic, follow the link: Flavin-Adenine Dinucleotide.

Journal articles on the topic 'Flavin-Adenine Dinucleotide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Flavin-Adenine Dinucleotide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Merk, Virginia, Eugen Speiser, Wolfgang Werncke, Norbert Esser, and Janina Kneipp. "pH-Dependent Flavin Adenine Dinucleotide and Nicotinamide Adenine Dinucleotide Ultraviolet Resonance Raman (UVRR) Spectra at Intracellular Concentration." Applied Spectroscopy 75, no. 8 (2021): 994–1002. http://dx.doi.org/10.1177/00037028211025575.

Full text
Abstract:
The ultraviolet resonance Raman spectra of the adenine-containing enzymatic redox cofactors nicotinamide adenine dinucleotide and flavin adenine dinucleotide in aqueous solution of physiological concentration are compared with the aim of distinguishing between them and their building block adenine in potential co-occurrence in biological materials. At an excitation wavelength of 266 nm, the spectra are dominated by the strong resonant contribution from adenine; nevertheless, bands assigned to vibrational modes of the nicotinamide and the flavin unit are found to appear at similar signal streng
APA, Harvard, Vancouver, ISO, and other styles
2

Presiado, Itay, and Dan Huppert. "Flavin Adenine Dinucleotide Photophysics in Ice." Journal of Physical Chemistry C 113, no. 9 (2009): 3835–43. http://dx.doi.org/10.1021/jp8079364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mondal, Padmabati, and Miquel Huix-Rotllant. "Theoretical insights into the formation and stability of radical oxygen species in cryptochromes." Physical Chemistry Chemical Physics 21, no. 17 (2019): 8874–82. http://dx.doi.org/10.1039/c9cp00782b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stockett, Mark H. "Photo-induced proton-coupled electron transfer and dissociation of isolated flavin adenine dinucleotide mono-anions." Physical Chemistry Chemical Physics 19, no. 38 (2017): 25829–33. http://dx.doi.org/10.1039/c7cp04068g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Copeland, Robert A., and Thomas G. Spiro. "Ultraviolet resonance Raman spectroscopy of flavin mononucleotide and flavin-adenine dinucleotide." Journal of Physical Chemistry 90, no. 25 (1986): 6648–54. http://dx.doi.org/10.1021/j100283a011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

van Schie, Morten M. C. H., Caroline E. Paul, Isabel W. C. E. Arends, and Frank Hollmann. "Photoenzymatic epoxidation of styrenes." Chemical Communications 55, no. 12 (2019): 1790–92. http://dx.doi.org/10.1039/c8cc08149b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

de-los-Santos-Álvarez, Noemí, Patricia de-los-Santos-Álvarez, M. Jesús Lobo-Castañón, Arturo J. Miranda-Ordieres, and Paulino Tuñón-Blanco. "Flavin Adenine Dinucleotide As Precursor for NADH Electrocatalyst." Analytical Chemistry 77, no. 13 (2005): 4286–89. http://dx.doi.org/10.1021/ac048545p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Honeychurch, Michael J., and Michael J. Ridd. "The derivative adsorption chronopotentiometry of flavin adenine dinucleotide." Electroanalysis 8, no. 4 (1996): 362–69. http://dx.doi.org/10.1002/elan.1140080412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

WATANABE, H. A., T. A. NAGATAKE, M. A. NAIKI, M. A. HASHIMOTO, K. A. ITO, and F. B. HAYASE. "Degradation of Amadori Compounds by Flavin Adenine Dinucleotide." Annals of the New York Academy of Sciences 1043, no. 1 (2005): 897. http://dx.doi.org/10.1196/annals.1333.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Seonhwa, Seungah Seo, Nam-Sihk Lee, Young Ho Yoon та Haesik Yang. "Sensitive electrochemical immunosensor using a bienzymatic system consisting of β-galactosidase and glucose dehydrogenase". Analyst 146, № 12 (2021): 3880–87. http://dx.doi.org/10.1039/d1an00562f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

HIRATSUKA, Atsunori, Mikio KAWASAKI, and Kiyoshi HASEBE. "Biological Sciences and Analytical Chemistry. Electrochemical bioassay using apoenzyme-flavin-adenine dinucleotide interaction for the detection of flavin-adenine dinucleotide." Bunseki kagaku 44, no. 10 (1995): 871–74. http://dx.doi.org/10.2116/bunsekikagaku.44.871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Li, Meng-Yin, Ya-Qian Wang, Yi-Lun Ying, and Yi-Tao Long. "Revealing the transient conformations of a single flavin adenine dinucleotide using an aerolysin nanopore." Chemical Science 10, no. 44 (2019): 10400–10404. http://dx.doi.org/10.1039/c9sc03163d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Yan, Min Sun, Jinping Qiao, Jin Ouyang, and Na Na. "FAD roles in glucose catalytic oxidation studied by multiphase flow of extractive electrospray ionization (MF-EESI) mass spectrometry." Chemical Science 9, no. 3 (2018): 594–99. http://dx.doi.org/10.1039/c7sc04259k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Saha, Abhijit, Parikshit Chandra Mandal, and Sudhindra Nath Bhattacharyya. "Gamma Radiolysis of Flavin Mononucleotide and Flavin-Adenine Dinucleotide in Aqueous Solution." Bulletin of the Chemical Society of Japan 64, no. 8 (1991): 2532–38. http://dx.doi.org/10.1246/bcsj.64.2532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bergel, Alain, and Maurice Comtat. "Thin-layer spectroelectrochemical study of the reversible reaction between nicotinamide adenine dinucleotide and flavin adenine dinucleotide." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 302, no. 1-2 (1991): 219–31. http://dx.doi.org/10.1016/0022-0728(91)85042-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Naim, Ahmad, Yoan Chevalier, Younes Bouzidi, et al. "Aerobic oxidation catalyzed by polyoxometalates associated to an artificial reductase at room temperature and in water." Inorganic Chemistry Frontiers 7, no. 12 (2020): 2362–69. http://dx.doi.org/10.1039/d0qi00442a.

Full text
Abstract:
Four polyoxometalates (POMs) were combined with an artificial reductase based on polyethyleneimine (PEI) and flavin mononucleotide (FMN) which is capable of delivering single electrons upon addition of nicotinamide adenine dinucleotide (NADH).
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Guifeng, Vincent Sichula, and Ksenija D. Glusac. "Role of Adenine in Thymine-Dimer Repair by Reduced Flavin-Adenine Dinucleotide." Journal of Physical Chemistry B 112, no. 34 (2008): 10758–64. http://dx.doi.org/10.1021/jp804506t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Karyakin, Arkady A., Yulia N. Ivanova, Ksenia V. Revunova, and Elena E. Karyakina. "Electropolymerized Flavin Adenine Dinucleotide as an Advanced NADH Transducer." Analytical Chemistry 76, no. 7 (2004): 2004–9. http://dx.doi.org/10.1021/ac035043n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Heiner, Z., A. Makai, F. Sarlós, et al. "Fluorescence Kinetics of Flavin Adenine Dinucleotide in Different Microenvironments." EPJ Web of Conferences 41 (2013): 07021. http://dx.doi.org/10.1051/epjconf/20134107021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

WADA, IKUO, NOBUYUKI KOGA, SHIN'ICHI YOSHIHARA, and HIDETOSHI YOSHIMURA. "Reconstitution of apo-DT-diaphorase with flavin-adenine dinucleotide." CHEMICAL & PHARMACEUTICAL BULLETIN 34, no. 11 (1986): 4840–43. http://dx.doi.org/10.1248/cpb.34.4840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gonzalez-Cabo, Pilar, Sheila Ros, and Francesc Palau. "Flavin Adenine Dinucleotide Rescues the Phenotype of Frataxin Deficiency." PLoS ONE 5, no. 1 (2010): e8872. http://dx.doi.org/10.1371/journal.pone.0008872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kamal, M. M., H. Elzanowska, M. Gaur, D. Kim, and V. I. Birss. "Electrochemistry of adsorbed flavin adenine dinucleotide in acidic solutions." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 318, no. 1-2 (1991): 349–67. http://dx.doi.org/10.1016/0022-0728(91)85316-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Narasimhan, Krishna, and Lemuel B. Wingard. "Site-specific immobilization of flavin adenine dinucleotide on indium/tin oxide electrodes through flavin adenine amino group." Applied Biochemistry and Biotechnology 11, no. 3 (1985): 221–32. http://dx.doi.org/10.1007/bf02798478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Shuang, Na Diao, Zhiwen Wang, Wenyu Lu, Ya-Jie Tang, and Tao Chen. "Modular Engineering of the Flavin Pathway inEscherichia colifor Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide Production." Journal of Agricultural and Food Chemistry 67, no. 23 (2019): 6532–40. http://dx.doi.org/10.1021/acs.jafc.9b02646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Molano-Arevalo, Juan Camilo, Diana R. Hernandez, Walter G. Gonzalez, et al. "Flavin Adenine Dinucleotide Structural Motifs: From Solution to Gas Phase." Analytical Chemistry 86, no. 20 (2014): 10223–30. http://dx.doi.org/10.1021/ac5023666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

MURATA, Akira, Shigeru SAKAI, Kiimio ODA, Kazuo OSHIMA, and Fumio KATO. "Phage-inactivating effect of riboflavin phosphate and flavin-adenine dinucleotide." Agricultural and Biological Chemistry 49, no. 6 (1985): 1881–83. http://dx.doi.org/10.1271/bbb1961.49.1881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Harvey, J. W., S. L. Stockham, M. A. Scott, P. J. Johnson, J. J. Donald, and C. J. Chandler. "Methemoglobinemia and Eccentrocytosis in Equine Erythrocyte Flavin Adenine Dinucleotide Deficiency." Veterinary Pathology 40, no. 6 (2003): 632–42. http://dx.doi.org/10.1354/vp.40-6-632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hossain, M. A., and K. Asada. "Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme." Journal of Biological Chemistry 260, no. 24 (1985): 12920–26. http://dx.doi.org/10.1016/s0021-9258(17)38813-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhang, Weimin, Yuzhen Zhou, and Donald F. Becker. "Regulation of PutA−Membrane Associations by Flavin Adenine Dinucleotide Reduction†." Biochemistry 43, no. 41 (2004): 13165–74. http://dx.doi.org/10.1021/bi048596g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Hung-Wing, and Edward S. Yeung. "Single-molecule dynamics of conformational changes in flavin adenine dinucleotide." Journal of Photochemistry and Photobiology A: Chemistry 172, no. 1 (2005): 73–79. http://dx.doi.org/10.1016/j.jphotochem.2004.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Murata, Akira, Shigeru Sakai, Kumio Oda, Kazuo Oshima, and Fumio Kato. "Phage-inactivating Effect of Riboflavin Phosphate and Flavin-adenine Dinucleotide." Agricultural and Biological Chemistry 49, no. 6 (1985): 1881–83. http://dx.doi.org/10.1080/00021369.1985.10866997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Birss, V. I., H. Elzanowska, and R. A. Turner. "The electrochemical behavior of flavin adenine dinucleotide in neutral solutions." Canadian Journal of Chemistry 66, no. 1 (1988): 86–96. http://dx.doi.org/10.1139/v88-013.

Full text
Abstract:
A detailed investigation of the electrochemical behavior of flavin adenine dinucleotide (FAD) in neutral solutions has been carried out at Hg and glassy carbon electrodes. At FAD concentrations of about 10−4 M, cyclic voltammetry (CV) shows a pair of anodic and cathodic peaks having a peak separation at low sweep rates indicative of a two-electron transfer process and yielding a formal redox potential for FAD of −0.206 ± 0.003 V vs. NHE at pH 7. Evidence for FAD adsorption was obtained in experiments at high sweep rates, from the effect of time of exposure of the electrode surface to FAD in so
APA, Harvard, Vancouver, ISO, and other styles
33

Fisher, M., S. Harbron, H. J. Eggelte, and B. R. Rabin. "Purification and semienzymic synthesis of flavin adenine dinucleotide-3′-phosphate." Enzyme and Microbial Technology 16, no. 4 (1994): 281–85. http://dx.doi.org/10.1016/0141-0229(94)90167-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kieninger, Martina, Oscar N. Ventura, and Tilman Kottke. "Calculation of the Geometries and Infrared Spectra of the Stacked Cofactor Flavin Adenine Dinucleotide (FAD) as the Prerequisite for Studies of Light-Triggered Proton and Electron Transfer." Biomolecules 10, no. 4 (2020): 573. http://dx.doi.org/10.3390/biom10040573.

Full text
Abstract:
Flavin cofactors, like flavin adenine dinucleotide (FAD), are important electron shuttles in living systems. They catalyze a wide range of one- or two-electron redox reactions. Experimental investigations include UV-vis as well as infrared spectroscopy. FAD in aqueous solution exhibits a significantly shorter excited state lifetime than its analog, the flavin mononucleotide. This finding is explained by the presence of a “stacked” FAD conformation, in which isoalloxazine and adenine moieties form a π-complex. Stacking of the isoalloxazine and adenine rings should have an influence on the frequ
APA, Harvard, Vancouver, ISO, and other styles
35

Barile, M., S. Passarella, A. Bertoldi, and E. Quagliariello. "Flavin Adenine Dinucleotide Synthesis in Isolated Rat Liver Mitochondria Caused by Imported Flavin Mononucleotide." Archives of Biochemistry and Biophysics 305, no. 2 (1993): 442–47. http://dx.doi.org/10.1006/abbi.1993.1444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gaignard, Pauline, Magalie Fréchou, Michael Schumacher, et al. "Progesterone reduces brain mitochondrial dysfunction after transient focal ischemia in male and female mice." Journal of Cerebral Blood Flow & Metabolism 36, no. 3 (2015): 562–68. http://dx.doi.org/10.1177/0271678x15610338.

Full text
Abstract:
This study investigated the effect of intranasal administration of progesterone on the early brain mitochondrial respiratory chain dysfunction and oxidative damage after transient middle cerebral occlusion in male and female mice. We showed that progesterone (8 mg/kg at 1 h post-middle cerebral occlusion) restored the mitochondrial reduced glutathione pool and the nicotinamide adenine dinucleotide-linked respiration in both sexes. Progesterone also reversed the decrease of the flavin adenine dinucleotide-linked respiration, which was only observed in females. Our findings point to a sex differ
APA, Harvard, Vancouver, ISO, and other styles
37

Moon, Shin, and Choe. "Crystal Structures of Putative Flavin Dependent Monooxygenase from Alicyclobacillus Acidocaldarius." Crystals 9, no. 11 (2019): 548. http://dx.doi.org/10.3390/cryst9110548.

Full text
Abstract:
Flavin dependent monooxygenases catalyze various reactions to play a key role in biological processes, such as catabolism, detoxification, and biosynthesis. Group D flavin dependent monooxygenases are enzymes with an Acyl-CoA dehydrogenase (ACAD) fold and use Flavin adenine dinucleotide (FAD) or Flavin mononucleotide (FMN) as a cofactor. In this research, crystal structures of Alicyclobacillus acidocaldarius protein formerly annotated as an ACAD were determined in Apo and FAD bound state. Although our structure showed high structural similarity to other ACADs, close comparison of substrate bin
APA, Harvard, Vancouver, ISO, and other styles
38

Краснопевцева, М. К., В. П. Белик, А. А. Богданов, И. В. Семенова, А. Г. Смолин та О. С. Васютинский. "Определение времен затухания и анизотропии поляризованной флуоресценции флавинадениндинуклеотида с субнаносекундным разрешением". Письма в журнал технической физики 46, № 12 (2020): 43. http://dx.doi.org/10.21883/pjtf.2020.12.49528.18234.

Full text
Abstract:
Optical properties of the biological coenzyme flavin adenine dinucleotide (FAD) in an aqueous solution were investigated. The time-resolved decay of polarized fluorescence excited by picosecond laser pulses provided data on two fluorescence lifetimes, rotational diffusion time and anisotropy parameter. The results obtained are compared with those obtained by other researchers.
APA, Harvard, Vancouver, ISO, and other styles
39

Hu, Jiangyong, and Puay Hoon Quek. "Effects of UV Radiation on Photolyase and Implications with Regards to Photoreactivation following Low- and Medium-Pressure UV Disinfection." Applied and Environmental Microbiology 74, no. 1 (2007): 327–28. http://dx.doi.org/10.1128/aem.00013-07.

Full text
Abstract:
ABSTRACT Photolyase activity following exposure to low-pressure (LP) and medium-pressure (MP) UV lamps was evaluated. MP UV irradiation resulted in a greater reduction in photolyase activity than LP UV radiation. The results suggest that oxidation of the flavin adenine dinucleotide in photolyase may have caused the decrease in activity.
APA, Harvard, Vancouver, ISO, and other styles
40

Zhukov, Ivan V., Alexey S. Kiryutin, Mikhail S. Panov, et al. "Exchange interaction in short-lived flavine adenine dinucleotide biradical in aqueous solution revisited by CIDNP (chemically induced dynamic nuclear polarization) and nuclear magnetic relaxation dispersion." Magnetic Resonance 2, no. 1 (2021): 139–48. http://dx.doi.org/10.5194/mr-2-139-2021.

Full text
Abstract:
Abstract. Flavin adenine dinucleotide (FAD) is an important cofactor in many light-sensitive enzymes. The role of the adenine moiety of FAD in light-induced electron transfer was obscured, because it involves an adenine radical, which is short-lived with a weak chromophore. However, an intramolecular electron transfer from adenine to flavin was revealed several years ago by Robert Kaptein by using chemically induced dynamic nuclear polarization (CIDNP). The question of whether one or two types of biradicals of FAD in aqueous solution are formed stays unresolved so far. In the present work, we
APA, Harvard, Vancouver, ISO, and other styles
41

Ruckenstuhl, Christoph, Andrea Poschenel, Reinhard Possert, Pravas Kumar Baral, Karl Gruber, and Friederike Turnowsky. "Structure-Function Correlations of Two Highly Conserved Motifs in Saccharomyces cerevisiae Squalene Epoxidase." Antimicrobial Agents and Chemotherapy 52, no. 4 (2008): 1496–99. http://dx.doi.org/10.1128/aac.01282-07.

Full text
Abstract:
ABSTRACT Saccharomyces cerevisiae squalene epoxidase contains two highly conserved motifs, 1 and 2, of unknown function. Amino acid substitutions in both regions reduce enzyme activity and/or alter allylamine sensitivity. In the homology model, these motifs flank the flavin adenine dinucleotide cofactor and form part of the interface between cofactor and substrate binding domains.
APA, Harvard, Vancouver, ISO, and other styles
42

Ma, Qinhong, Francis Roy, Sarah Herrmann, Barry L. Taylor, and Mark S. Johnson. "The Aer Protein of Escherichia coli Forms a Homodimer Independent of the Signaling Domain and Flavin Adenine Dinucleotide Binding." Journal of Bacteriology 186, no. 21 (2004): 7456–59. http://dx.doi.org/10.1128/jb.186.21.7456-7459.2004.

Full text
Abstract:
ABSTRACT In vivo cross-linking between native cysteines in the Aer receptor of Escherichia coli showed dimer formation at the membrane anchor and in the putative HAMP domain. Dimers also formed in mutants that did not bind flavin adenine dinucleotide and in truncated peptides without a signaling domain and part of the HAMP domain.
APA, Harvard, Vancouver, ISO, and other styles
43

Sjulstok, Emil, and Ilia A. Solov’yov. "Structural Explanations of Flavin Adenine Dinucleotide Binding in Drosophila melanogaster Cryptochrome." Journal of Physical Chemistry Letters 11, no. 10 (2020): 3866–70. http://dx.doi.org/10.1021/acs.jpclett.0c00625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Antill, Lewis M., and Jonathan R. Woodward. "Flavin Adenine Dinucleotide Photochemistry Is Magnetic Field Sensitive at Physiological pH." Journal of Physical Chemistry Letters 9, no. 10 (2018): 2691–96. http://dx.doi.org/10.1021/acs.jpclett.8b01088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Durner, Jörg, and Peter Böger. "Oligomeric Forms of Plant Acetolactate Synthase Depend on Flavin Adenine Dinucleotide." Plant Physiology 93, no. 3 (1990): 1027–31. http://dx.doi.org/10.1104/pp.93.3.1027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mayeno, Arthur N., Kimm J. Hamann, and Gerald J. Gleich. "Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence." Journal of Leukocyte Biology 51, no. 2 (1992): 172–75. http://dx.doi.org/10.1002/jlb.51.2.172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Niwa, Hideaki, and Takashi Umehara. "Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases." Epigenetics 12, no. 5 (2017): 340–52. http://dx.doi.org/10.1080/15592294.2017.1290032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kitzler, Jeffrey W., and Irwin Fridovich. "An activity stain for proteins containing noncovalently bound flavin adenine dinucleotide." Analytical Biochemistry 174, no. 2 (1988): 613–17. http://dx.doi.org/10.1016/0003-2697(88)90063-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kurzban, Gary P., and Henry W. Strobel. "Purification of flavin mononucleotide-dependent and flavin-adenine dinucleotide-dependent reduced nicotinamide-adenine dinucleotide phosphate—cytochrome P-450 reductase by high-performace liquid chromatography on hydroxyapatite." Journal of Chromatography A 358 (January 1986): 296–301. http://dx.doi.org/10.1016/s0021-9673(01)90344-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kalinina, Sviatlana, Christian Freymueller, Nilanjon Naskar, et al. "Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by Means of Fluorescence Lifetime Imaging Techniques." International Journal of Molecular Sciences 22, no. 11 (2021): 5952. http://dx.doi.org/10.3390/ijms22115952.

Full text
Abstract:
Metabolic FLIM (fluorescence lifetime imaging) is used to image bioenergetic status in cells and tissue. Whereas an attribution of the fluorescence lifetime of coenzymes as an indicator for cell metabolism is mainly accepted, it is debated whether this is valid for the redox state of cells. In this regard, an innovative algorithm using the lifetime characteristics of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) to calculate the fluorescence lifetime induced redox ratio (FLIRR) has been reported so far. We extended the FLIRR approach and present
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!