Academic literature on the topic 'Flexibility of the building'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flexibility of the building.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flexibility of the building"
Saari, Arto, and Pekka Heikkila. "Building Flexibility Management." Open Construction and Building Technology Journal 2, no. 1 (October 13, 2008): 239–42. http://dx.doi.org/10.2174/1874836800802010239.
Full textFallahi, Zahra, and Gregor Henze. "Interactive Buildings: A Review." Sustainability 11, no. 14 (July 23, 2019): 3988. http://dx.doi.org/10.3390/su11143988.
Full textMugnini, Alice, Fabio Polonara, and Alessia Arteconi. "Energy flexibility in residential buildings clusters." E3S Web of Conferences 197 (2020): 03002. http://dx.doi.org/10.1051/e3sconf/202019703002.
Full textعادل محمد بن ياسين, عادل محمد بن ياسين. "Building Systems and Flexibility: Developing a Conceptual Cost Analysis Framework for Office Buildings." journal of king abdulaziz university environmental design Science 6, no. 1 (January 10, 2009): 137–50. http://dx.doi.org/10.4197/env.6-1.7.
Full textLiu, Mingzhe, Hicham Johra, Per Kvols Heiselberg, Ivan Kolev, and Kremena Pavlova. "Energy flexibility of office buildings – Potential of different building types." E3S Web of Conferences 111 (2019): 01052. http://dx.doi.org/10.1051/e3sconf/201911101052.
Full textKaratzas, Stylianos K., Athanasios P. Chassiakos, and Anastasios I. Karameros. "Business Processes and Comfort Demand for Energy Flexibility Analysis in Buildings." Energies 13, no. 24 (December 12, 2020): 6561. http://dx.doi.org/10.3390/en13246561.
Full textSlaughter, E. Sarah. "Design strategies to increase building flexibility." Building Research & Information 29, no. 3 (May 2001): 208–17. http://dx.doi.org/10.1080/09613210010027693.
Full textDas, Ajay. "Towards theory building in manufacturing flexibility." International Journal of Production Research 39, no. 18 (January 2001): 4153–77. http://dx.doi.org/10.1080/00207540110072281.
Full textHomaei, Shabnam, and Mohamed Hamdy. "Quantification of Energy Flexibility and Survivability of All-Electric Buildings with Cost-Effective Battery Size: Methodology and Indexes." Energies 14, no. 10 (May 12, 2021): 2787. http://dx.doi.org/10.3390/en14102787.
Full textWeiß, T. "Energy Flexible Buildings - The impact of building design on energy flexibility." IOP Conference Series: Earth and Environmental Science 323 (September 6, 2019): 012009. http://dx.doi.org/10.1088/1755-1315/323/1/012009.
Full textDissertations / Theses on the topic "Flexibility of the building"
Al-Nijaidi, H. R. "Flexibility in the design of buildings." Thesis, Oxford Brookes University, 1985. http://radar.brookes.ac.uk/radar/items/195d4e72-b637-0ed3-3a5b-7d978f9a39c1/1.
Full textDhotel, Alexandre. "Molecular Flexibility of Self-Assembled Systems: Effects of Building Block Polarity." Phd thesis, Université de Rouen, 2013. http://tel.archives-ouvertes.fr/tel-00958354.
Full textWolf, Tobias. "Model-based Assessment of Heat Pump Flexibility." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284083.
Full textLi, Yu-wai Vic. "Explaining the institutional flexibility of the ASEAN Regional Forum : a rationalist first-cut /." View the Table of Contents & Abstract, 2007. http://sunzi.lib.hku.hk/hkuto/record/B37121236.
Full textPéan, Thibault Q. "Heat pump controls to exploit the energy flexibility of building thermal loads." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669805.
Full textPara aprovechar todo el potencial de flexibilidad energética de las cargas térmicas en los edificios equipados con bombas de calor se requiere de sistemas de control inteligente. Una revisión bibliográfica ha revelado que la mayoría de las estrategias de gestión utilizadas para esta finalidad pueden ser clasificadas en dos categorías: control en base a reglas (RBC en inglés) o predictivo (MPC en inglés), basado en optimización y en el uso de modelos. Tanto RBC como MPC pueden utilizar señales externas de penalización para fundamentar sus decisiones. El precio de la electricidad es utilizado a este fin de forma habitual en estrategias de reducción de coste. Una nueva señal de emisiones marginales de CO2 fue también creada como alternativa. Se han desarrollado un controlador RBC y un MPC para sistemas de bombas de calor aire-agua que cubren las demandas de climatización y agua caliente en el ámbito residencial. El RBC modula las consignas de temperatura, y el MPC minimiza las penalizaciones totales del sistema, al mismo tiempo que se consideran restricciones operativas y de confort. En particular, el MPC ha requerido el desarrollo de nuevos modelos simplificados, para predecir la demanda del edificio y el rendimiento de la bomba de calor, tanto en modo calefacción como en modo refrigeración. Otras novedades añadidas en la configuración del MPC son la formulación entera mixta, y la consideración del retraso debido al tiempo de cómputo. Los controladores fueron testeados, primeramente, en un entorno experimental -hardware-in-the-loop-, con una bomba de calor real instalada en el laboratorio y conectada a unos bancos térmicos que emulan las cargas térmicas del edificio. El entorno experimental ha permitido poner de manifiesto algunos retos prácticos tales como la discrepancia en el modelo del MPC y conflictos de conexión con el controlador local de la bomba de calor. En segundo lugar, un entorno de simulación ha sido creado para testear diversas configuraciones, usando TRNSYS acoplado con MATLAB. Para ello, se ha desarrollado un modelo detallado de la bomba de calor, basado en ensayos realizados en laboratorio, que reproduce el comportamiento dinámico de la bomba de calor con alta fidelidad. Tanto los resultados experimentales como los simulados han revelado la capacidad de los dos tipos de control de desplazar las cargas del edificio hacia periodos donde la electricidad era más barata o había menos emisiones de CO2, estos dos objetivos presentando de hecho impactos contradictorios. En los casos donde el control de referencia presentaba un amplio margen de mejora, los controladores RBC y MPC han demostrado la capacidad de actuar eficientemente y proveer ahorros importantes: alrededor de un 15% de emisiones en modo calefacción, y de un 30% de coste en modo frío. En aquellos casos en el que el control de referencia actuaba de forma cercana a la óptima, los controladores RBC no han sido capaces de aportar mejoras significativas, mientras que el MPC ha demostrado la capacidad de conseguir ahorros de un 5% de coste en modo calefacción y de un 10% de emisiones en modo frío. La investigación realizada en esta tesis ha abarcado amplios aspectos de la flexibilidad energética en los edificios: la generación de señales de penalización, la representación gráfica del potencial de flexibilidad, el ajuste de modelos simplificados, el desarrollo de controladores, el ensayo en entorno experimental y de simulación, con la consecuente evaluación de su rendimiento comparado en periodos de invierno y de verano, así como una discusión de las barreras que dificultan la implementación de controladores MPC y RBC a gran escala. Finalmente, la tesis ha evidenciado el rendimiento de los controladores desarrollados si se formulan de forma adecuada, demostrando su potencial para el desplazamiento del consumo eléctrico en la edificación residencial con sistemas de bomba de calor respondiendo a diferentes señales de penalización. En conclusión, los sistemas propuestos pueden ser elementos muy valiosos para favorecer la necesaria flexibilidad de la demanda térmica en la edificación y posibilitar la integración de sistemas de generación renovables en la red
Kintingu, Simion Hosea. "Design of interlocking bricks for enhanced wall construction, flexibility, alignment accuracy and load bearing." Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/2768/.
Full textLi, Yu-wai Vic, and 李裕維. "Explaining the institutional flexibility of the ASEAN Regional Forum: a rationalist first-cut." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38319299.
Full textGalko, Amber Elizabeth. "Integrating Flexibility and Sustainability to Define a New Net-Zero Apartment Building Prototype." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/347179.
Full textGalko, Amber E. "Integrating Flexibility and Sustainability to Define a New Net-Zero Apartment Building Prototype." Thesis, The University of Arizona, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1583760.
Full textTwo key architectural concepts that must be taken into account in every design are sustainability and flexibility. These two ideas are inherently tied to one another. Sustainability refers to ideas and processes that provide solutions meant to better our built environment by using renewable resources, and reducing the amount of energy used in order to ensure our planets well-being for future generations. Flexibility refers to the capability of adaptation in order to accommodate different situations and circumstances. Users will always change through time, while a structure remains the same. The goal of flexibility is to allow a building to evolve as its users do in both long and short term. Rooms can be added or removed, exterior connections can change, and uses of rooms can change through out the day as spaces are used differently. Flexibility will extend a building's entire life cycle and reducing the need for expensive renovations by making every space multi-use. Each building's entire life cycle should be taken into account during the design phase, and no building should serve as a single use, this idea will also make them more sustainable. These two concepts will also have very important social and economical implications for the users.
DiMaio, Christopher Michael. "Interstitial Building Space and its Relationship to Evidence Based Design." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/89901.
Full textMaster of Science
Healthcare facilities are dynamic, long-term investments that must be able to respond to change in order to avoid obsolescence. Flexibility is one response which enables facilities to combat changes and/ or uncertainties. This thesis explores the relationships between flexibility, Interstitial Building Space and Evidence Based Design, documents each relationship, and depicts their interrelated nature with the establishment of an overarching framework.
Books on the topic "Flexibility of the building"
Pedersen, Stephanie. Vitamin C: Building flexibility & fighting infection. New York: Dorling Kindersley Pub., 2000.
Find full textBrown, Bonnie M. Unexpected wealth: A fire drill for building strength and flexibility in families. Eugene, OR: TDI Press, 2003.
Find full textBrown, Bonnie M. Sudden death: A fire drill for building strength and flexibility in families. Eugene, OR: TDI Press, 2003.
Find full textPéan, Thibault. Heat Pump Controls to Exploit the Energy Flexibility of Building Thermal Loads. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63429-2.
Full textThe runner's guide to yoga: A practical approach to building strength and flexibility for better running. Boulder, Colo: VeloPress, 2012.
Find full textMcNaught-Davis, Paul. Developing flexibility. Leeds: National Coaching Foundation, 1986.
Find full textGreat Britain. Work Research Unit. Craft flexibility. London: Work Research Unit, 1985.
Find full textGerber, Jochen, Hanjo Arms, Mathias Wiecher, and Christian Danner. Leveraging Flexibility. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54362-3.
Full textBook chapters on the topic "Flexibility of the building"
Graves, Stephen C. "Flexibility Principles." In Building Intuition, 33–49. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-73699-0_3.
Full textHamdi, Nabeel. "3. Flexibility and building." In Housing without Houses, 49–74. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1995. http://dx.doi.org/10.3362/9781780442341.003.
Full textDe Meyer, Arnoud, and Jovina Ang. "Flexibility and quality in implementation." In Building Excellence in Higher Education, 109–25. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003083719-10.
Full textPetit, Marjorie M., Robert E. Laird, Matthew F. Wyneken, Frances R. Huntoon, Mary D. Abele-Austin, and Jean D. Sequeira. "Percents—Building Understanding, Flexibility and Fluency." In A Focus on Ratios and Proportions, 189–216. New York, NY : Routledge, 2020.: Routledge, 2020. http://dx.doi.org/10.4324/9780429353611-9.
Full textKalberg, Christopher S. "Building Flexibility for the Undergraduate Chemistry Laboratory." In Innovations and Renovations: Designing the Teaching Laboratory, 127–40. Washington, DC: American Chemical Society, 2013. http://dx.doi.org/10.1021/bk-2013-1146.ch009.
Full textAtkins, Sandra L. "Building Precision and Flexibility in Using Mathematical Language." In Creating a Language-Rich Math Class, 101–6. 2nd ed. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003175698-10.
Full textHäusermann, Silja, and Hanna Schwander. "Switzerland: Building a Multi-Pillar Pension System for a Flexible Labour Market." In Labour Market Flexibility and Pension Reforms, 155–81. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9780230307605_6.
Full textPéan, Thibault. "Development of Controllers for Energy Flexibility." In Heat Pump Controls to Exploit the Energy Flexibility of Building Thermal Loads, 111–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63429-2_4.
Full textDeepa, S., I. R. Mithanthaya, and S. V. Venkatesh. "Performance-Based Evaluation of Building With and Without Soil Flexibility." In Lecture Notes in Civil Engineering, 625–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0890-5_52.
Full textPrins, M., M. F. Th Bax, J. C. Carp, and H. Tempelmans Plat. "A Design Decision Support System for Building Flexibility and Costs." In Design and Decision Support Systems in Architecture, 147–63. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-1229-3_12.
Full textConference papers on the topic "Flexibility of the building"
Hall, P., and G. Eccleston. "Building flexibility & sustainabilitv into plants." In IET 3rd Annual Seminar on Power Generation Control. Building Flexibility & Sustainability into Plants. IEE, 2008. http://dx.doi.org/10.1049/ic.2008.0679.
Full textLi, Rongling, Andong Wang, Carsten Rode, and Shi You. "Energy Flexibility of Building Cluster – Part I: Occupancy Modelling." In 7th International Building Physics Conference. Syracuse, New York: International Association of Building Physics (IABP), 2018. http://dx.doi.org/10.14305/ibpc.2018.hf-3.01.
Full textLe Dréau, Jérôme, and Johann Meulemans. ""Characterisation of the flexibility potential from space heating in French residential buildings"." In 7th International Building Physics Conference. Syracuse, New York: International Association of Building Physics (IABP), 2018. http://dx.doi.org/10.14305/ibpc.2018.ep-1.01.
Full textMocanu, Elena, Phuong H. Nguyen, and Madeleine Gibescu. "Energy disaggregation for real-time building flexibility detection." In 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE, 2016. http://dx.doi.org/10.1109/pesgm.2016.7741966.
Full textBhuiyan, Mohammad T., and Roberto T. Leon. "Effect of Diaphragm Flexibility on Tall Building Responses." In Structures Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412848.200.
Full textSchenk, Sigrid A. "Valuation of flexibility for public investments." In 2008 First International Conference on Infrastructure Systems and Services: Building Networks for a Brighter Future (INFRA). IEEE, 2008. http://dx.doi.org/10.1109/infra.2008.5439689.
Full textLichnowski, A. "Alarm systems internal buy-in & design." In IET 3rd Annual Seminar on Power Generation Control. Building Flexibility & Sustainability into Plants. IEE, 2008. http://dx.doi.org/10.1049/ic.2008.0676.
Full textSedgwick, M. "Issues facing the power generation industry." In IET 3rd Annual Seminar on Power Generation Control. Building Flexibility & Sustainability into Plants. IEE, 2008. http://dx.doi.org/10.1049/ic.2008.0674.
Full textWyman, P. "The approach to legacy systems within the non-nuclear power station sector." In IET 3rd Annual Seminar on Power Generation Control. Building Flexibility & Sustainability into Plants. IEE, 2008. http://dx.doi.org/10.1049/ic.2008.0675.
Full textHitchen, I., and C. de Salis. "Segregated integration - the paradox." In IET 3rd Annual Seminar on Power Generation Control. Building Flexibility & Sustainability into Plants. IEE, 2008. http://dx.doi.org/10.1049/ic.2008.0677.
Full textReports on the topic "Flexibility of the building"
Harris, Chioke. Opaque Envelopes: Pathway to Building Energy Efficiency and Demand Flexibility: Key to a Low-Carbon, Sustainable Future. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821413.
Full textEckman, Tom, Lisa Schwartz, and Greg Leventis. Determining Utility System Value of Demand Flexibility From Grid-interactive Efficient Buildings. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1619177.
Full textSchiller, Steven, Lisa Schwartz, and Sean Murphy. Performance Assessments of Demand Flexibility from Grid-Interactive Efficient Buildings: Issues and Considerations. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1644287.
Full textAmador, Manuel, Ivan Werning, and George-Marios Angeletos. Commitment Vs. Flexibility. Cambridge, MA: National Bureau of Economic Research, December 2003. http://dx.doi.org/10.3386/w10151.
Full textnone,. Industrial Fuel Flexibility Workshop. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/1218736.
Full textDeshmukh, Abhijit, Barry Boehm, Tom Housel, David Jacques, Supannika Koolmanojwong, Jo Ann Lane, Alan Levin, Brandon Pope, Erin Ryan, and Martin Wortman. Valuing Flexibility. Phase 2. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada604983.
Full textDeshmukh, Abhijit, Barry Boehm, Tom Housel, Dave Jacques, Supannika Koolmanojwong, Jo Ann Lane, Alan Levin, Brandon Pope, Erin Ryan, and Martin Wortman. Valuing Flexibility Phase 2. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada590057.
Full textBertola, Giuseppe. Flexibility, Investment, and Growth. Cambridge, MA: National Bureau of Economic Research, October 1991. http://dx.doi.org/10.3386/w3864.
Full textHayes, Caroline, and Saif Benjaafar. Quantifying Flexibility in Sequential Decision Making: Helping Commanders Assess Flexibility in Planning. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada456591.
Full textCaballlero, Ricardo, Eduardo Engel, and Alejandro Micco. Microeconomic Flexibility in Latin America. Cambridge, MA: National Bureau of Economic Research, March 2004. http://dx.doi.org/10.3386/w10398.
Full text