To see the other types of publications on this topic, follow the link: Flexible AC transmission system (FACTS) devices.

Dissertations / Theses on the topic 'Flexible AC transmission system (FACTS) devices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Flexible AC transmission system (FACTS) devices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Zeraatzade, Mahbube. "Transmission congestion management by optimal placement of FACTS devices." Thesis, Brunel University, 2010. http://bura.brunel.ac.uk/handle/2438/4710.

Full text
Abstract:
This thesis describes the implementation of the Flexible AC Transmission Systems (FACTS) devices to develop a market-based approach to the problem of transmission congestion management in a Balancing Market. The causes, remedies and pricing methods of transmission congestion are briefly reviewed. Balancing Market exists in markets in which most of the trading is done via decentralized bilateral contracts. In these markets only final adjustments necessary to ensure secure system operation is carried out at a centralized Balancing Market. Each market player can participate in the Balancing Market by submitting offers and bids to increase and decrease its initially submitted active generation output. In this research a method is proposed to reduce costs associated with congestion re-dispatch in a Balancing Market by optimal placement of FACTS devices, and in particular Thyristor Controlled Phase Shifter Transformers (TCPST). The proposed technique is applicable to both Mixed Integer Linear Programming (MILP) and Mixed Integer Non-Linear Programming (MINLP). In the MILP a power system network is represented by a simplified DC power flow under a MILP structure and the Market participants' offers and bids are also represented by linear models. Results show that applications of FACTS devices can significantly reduce costs of congestion re-dispatch. The application of the method based on the MINLP creates a nonlinear and non-convex AC OPF problem that might be trapped in local sub-optima solutions. The reliability of the solution that determines the optimal placement of FACTS devices is an important issue and is carried out by investigation of alternative solvers. The behavior of the MINLP solvers is presented and finally the best solvers for this particular optimization problem are introduced. The application of DC OPF is very common in industry. The accuracy of the DC OPF results is investigated and a comparison between the DC and AC OPF is presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Athanasiadis, Nikolaos P. "Modelling, control and design of Flexible AC Transmission Systems (FACTS), custom power devices and variable speed drives for transmission and distribution architectures." Thesis, University of Strathclyde, 1999. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21441.

Full text
Abstract:
The main tasks of power electronics in power transmission and distribution systems is to process and control the flow of electric energy by supplying voltages and currents in a form that is suitable for user loads. In recent years, the field of power electronics has experienced a large growth. Electric utilities expected that by the year 2000 over half of the electrical load may be supplied through power electronic systems. In order to take advantage of this highly developed technology a number of detailed modelling procedures and simulation facilities are needed. The work in this thesis is concentrated on modelling, control and design of various power electronic based models for use within transmission and distribution systems. The overall objective is to provide effective methods and tools for assessing the impact of the latest technology based on power electronic devices in the reinforcement of power system networks. The thesis clarifies modelling and control of various variable speed drive models, such as the six-step, PWM and vector control and gives a detailed account of the systematic derivation of equations that are necessary for the dynamic and transient analysis of a multi-machine multi-node power system with associated adjustable speed drives. Simulation of Flexible AC Transmission Systems (FACTS) models has also been developed for a number of devices including: the SVC (Static Var Compensator), the STATCON (Static Condenser) and the UPFC (Unified Power Flow Controller). The methodologies for development of the models are described and a number of case studies are included in order to give a broad overview of the applications and to prove the usefulness of the results. The last part of the thesis includes simulation, control and design of Custom Power Devices for use within distribution system architectures. It starts with a complete control system strategy for the modelling of a solid-state switch and continues with the modelling of a Dynamic Voltage Restorer model, using an innovative control system. The creation of the power electronics models library provides several opportunities for future developments, which are discussed in the concluding sections of the thesis.
APA, Harvard, Vancouver, ISO, and other styles
3

Nguyen, Van Liem. "Modeling and control coordination of power systems with FACTS devices in steady-state operating mode." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2009.0036.

Full text
Abstract:
This thesis is devoted to the development of new models for a recently-implemented FACTS (flexible alternating current transmission system) device, the unified power flow controller (UPFC), and the control coordination of power systems with FACTS devices in steady-state operating mode. The key objectives of the research reported in the thesis are, through online control coordination based on the models of power systems having FACTS devices, those of maximising the network operational benefit and restoring system static security following a disturbance or contingency. Based on the novel concept of interpreting the updated voltage solutions at each iteration in the Newton-Raphson (NR) power-flow analysis as dynamic variables, the thesis first develops a procedure for representing the unified power flow controllers (UPFCs) in the steady-state evaluation. Both the shunt converter and series converter control systems of a UPFC are modeled in their dynamical form with the discrete time variable replaced by the NR iterative step in the power-flow analysis. The key advantage of the model developed is that of facilitating the process of UPFC constraint resolution during the NR solution sequence. Any relative priority in control functions pre-set in the UPFC controllers is automatically represented in the power-flow formulation. Although the developed UPFC model based on the dynamic simulation of series and shunt converter controllers is flexible and general, the number of NR iterations required for convergence can be large. Therefore, the model is suitable mainly for power system planning and design studies. For online control coordination, the thesis develops the second UPFC model based on nodal voltages. The model retains all of the flexibility and generality of the dynamic simulation-based approach while the number of iterations required for solution convergence is independent of the UPFC controller dynamic responses. Drawing on the constrained optimisation based on Newton’s method together with the new UPFC model expressed in terms of nodal voltages, a systematic and general method for determining optimal reference inputs to UPFCs in steady-state operation is developed. The method is directly applicable to UPFCs operation with a high-level line optimisation control (LOC) for maximising the network operational benefit. By using a new continuation technique with adaptive parameter, the algorithm for solving the constrained optimisation problem extends substantially the region of convergence achieved with the conventional Newton’s method. Having established the foundation provided by the comprehensive models developed for representing power systems with FACTS devices including the UPFC, the research, in the second part, focuses on real-time control coordination of power system controllers, with the main purpose of restoring power system static security following a disturbance or contingency. At present, as the cost of phasor measurement units (PMUs) and wide-area communication network is on the decrease, the research proposes and develops a new secondary voltage control where voltages at all of the load nodes are directly controlled, using measured voltages.
APA, Harvard, Vancouver, ISO, and other styles
4

Lakkireddy, Jahnavi. "Steady State Voltage Stability Enhancement Using Shunt and Series FACTS Devices." ScholarWorks@UNO, 2014. http://scholarworks.uno.edu/td/1881.

Full text
Abstract:
It is specifically important to focus on voltage stability analysis of the power system to avoid worst case scenarios such as voltage collapse. The purpose of this thesis is to identify methods for enhancing the steady-state voltage stability using FACTS devices and determining their impact on real and reactive power losses, improvement of bus voltage magnitude, and transmission line loadability. To achieve this, FACTS devices such as Static VAR Compensator (SVC), Static Synchronous Compensator (STATCOM), and Thyristor Controlled Series Capacitor (TCSC) are used in the test system as three separate test cases. The results obtained assist in drawing conclusions on the effectiveness of each FACTS devices at generator, load and swing buses, on lines between two load buses, and between a load bus and a generator bus, in terms of metrics such as voltage magnitude profile, PV curves, and active and reactive power losses.
APA, Harvard, Vancouver, ISO, and other styles
5

Qiao, Wei. "Integrated control of wind farms, facts devices and the power network using neural networks and adaptive critic designs." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29716.

Full text
Abstract:
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Ronald G. Harley; Committee Member: David G. Taylor; Committee Member: Deepakraj M. Divan; Committee Member: Ganesh Kumar Venayagamoorthy; Committee Member: Thomas G. Habetler. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
6

Nasri, Amin. "On the Dynamics and Statics of Power System Operation : Optimal Utilization of FACTS Devicesand Management of Wind Power Uncertainty." Doctoral thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154576.

Full text
Abstract:
Nowadays, power systems are dealing with some new challenges raisedby the major changes that have been taken place since 80’s, e.g., deregu-lation in electricity markets, significant increase of electricity demands andmore recently large-scale integration of renewable energy resources such aswind power. Therefore, system operators must make some adjustments toaccommodate these changes into the future of power systems.One of the main challenges is maintaining the system stability since theextra stress caused by the above changes reduces the stability margin, andmay lead to rise of many undesirable phenomena. The other important chal-lenge is to cope with uncertainty and variability of renewable energy sourceswhich make power systems to become more stochastic in nature, and lesscontrollable.Flexible AC Transmission Systems (FACTS) have emerged as a solutionto help power systems with these new challenges. This thesis aims to ap-propriately utilize such devices in order to increase the transmission capacityand flexibility, improve the dynamic behavior of power systems and integratemore renewable energy into the system. To this end, the most appropriatelocations and settings of these controllable devices need to be determined.This thesis mainly looks at (i) rotor angle stability, i.e., small signal andtransient stability (ii) system operation under wind uncertainty. In the firstpart of this thesis, trajectory sensitivity analysis is used to determine themost suitable placement of FACTS devices for improving rotor angle sta-bility, while in the second part, optimal settings of such devices are foundto maximize the level of wind power integration. As a general conclusion,it was demonstrated that FACTS devices, installed in proper locations andtuned appropriately, are effective means to enhance the system stability andto handle wind uncertainty.The last objective of this thesis work is to propose an efficient solutionapproach based on Benders’ decomposition to solve a network-constrained acunit commitment problem in a wind-integrated power system. The numericalresults show validity, accuracy and efficiency of the proposed approach.

The Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively.QC 20141028

APA, Harvard, Vancouver, ISO, and other styles
7

Li, Peng. "New types of voltage source converters applied in flexible AC transmission system devices." Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25774.

Full text
Abstract:
The uses of flexible alternating current transmission system (FACTS) controllers in next generation smart grids are encouraged by the increased uses of decentralized and highly meshed grid structures that may affect the stability of power systems. Voltage source converter (VSC) based FACTS devices have reduced footprint and offer increased control flexibility, extended range and faster reaction time than line commutated thyristor based equivalent solutions. The performance of commonly used FACTS devices that employ a two-level converter is summarized. Then, multilevel converters and direct AC-AC converters which are viable for FACTS applications are reviewed. The outcomes of the literature surveys are refined to identify new features that may be critical for future centralised and decentralized smart grids such as: control range extension, improved efficiency and power density at reduced hardware cost. To pursue these features, three novel VSC topologies are proposed and analysed: An AC voltage-doubled (ACVD) topology with an internal inverting buck-boost cell in each phase-leg, is able to synthesize twice the output voltage of a conventional two-level VSC for the same dc link voltage, is proposed. A number of new modulation and control strategies that aim to further increase DC utilization of the ACVD converter and to manage its internal dynamic interaction to prevent the appearance of low-order harmonics in the output currents, are presented. With its high DC-rail utilization and sophisticated control strategies, the ACVD converter offers an extended power control range, which is increasingly important for shunt and series type FACTS devices. The controlled transition full-bridge hybrid multilevel converter (CTFB-HMC) with chain-links of full-bridge cells is proposed to combine the advantages of improved wave-shaping ability, reduced footprint and high efficiency, which promote its applications in medium and high voltage FACTS devices. An AC hexagonal chopper using heterodyne modulation to decouple the control of AC voltage amplitude from that of the phase-angle is proposed. For scalability to medium and high voltage, a modular multilevel AC hexagonal chopper (M2AHC) is developed. With adoption of a quasi-two-level transitional mode for reduced cell number and minimized footprint, dv/dt is limited and reliability is improved. Simulation and experimentation are used to validate the modulation, control and FACTS implementation of the three proposed converters.
APA, Harvard, Vancouver, ISO, and other styles
8

Bésanger, Yvon. "Etude des FACTS (Flexible AC Transmission System) et de leur comportement dans les réseaux de transport et d'interconnexion." Grenoble INPG, 1996. https://hal.archives-ouvertes.fr/tel-01147005.

Full text
Abstract:
Les systèmes FACTS (Flexible AC Transmission system) sont pressentis pour l'amélioration des performances des réseaux de transport et d'interconnexion. De nombreuses études ont été faites récemment sur ces systèmes concernant l'augmentation de la vitesse de contrôle des paramètres des lignes (tension, impédance et déphasage). Les compensations shunt et série utilisant des systèmes d'électronique de puissance sont des concepts FACTS et permettent aux réseaux d'être plus flexibles. La compensation shunt réalise de préférence le support de la tension alors que la compensation série est employée pour réduire l'impédance des lignes et donc pour augmenter la capacité de transfert de puissance ainsi qu'améliorer la répartition des transits de puissance dans le réseau, aussi bien que les stabilités statiques et dynamiques. Plusieurs systèmes ont été développés ces dernières années. Ce rapport décrit une étude comparative concernant le comportement statique et dynamique de trois systèmes FACTS dans les réseaux de transport : le SVC (static var compensator), le Statcon (static condenser) et le TCSC (thyristors controlled series compensator). Ce travail est axé sur la stabilité de tension et les capacités de transfert de puissance et inclu l'étude de l'action des LTC (load tap changers). Les effets des PSS (power system stabilizers) sont également analysés dans le but de les comparer ultérieurement aux systèmes FACTS. Les résultats ont été obtenus à l'aide de différents réseaux tests (réseau 14 nœuds IEEE, réseau UHV français simplifié, réseau new-england 39 nœuds) et ont montré l'impact de chaque système FACTS sur les réseaux de puissance
FACTS Systems (Flexible AC Transmission System) are approached to improve performance transport networks and interconnection. Many studies have been done recently on these systems for increasing the speed of parameter control lines (voltage, impedance and phase shift). The shunt and series compensation using systems power electronics are FACTS concepts and enable networks to be more flexible. Shunt compensation is preferably carried out the tension carrier while the series compensation is used to reduce the impedance of the lines and thus to increase the transfer capability power and improve the distribution of power flows in the network, as well as Static and dynamic stability. Several systems have been presented in recent years. This report presents a comparative study of the static and dynamic behavior of three FACTS systems in transport networks: the SVC (Var Compensator Statie), the STATCON (ST condense ATIC) and the TCSC (Thyristor Controlled Series Compensator). This work focuses on voltage stability and power transfer capacity and undue study of the action of L TC (Load Tap Changers). The effects of PSS (Power System Stabilizers) are also analyzed in the purpose of later compare them with FACTS systems. The results were obtained using different tests networks (network 14 noeus IEEE, Simplified French UHV network, New England network 39 knots) and showed the impact of each FACTS system on power networks
APA, Harvard, Vancouver, ISO, and other styles
9

Griffin, Julie. "A study of the impact of flexible AC transmission system devices on the economic-secure operation of power systems." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23263.

Full text
Abstract:
This thesis examines how Flexible AC Transmission Systems (FACTS) devices can improve the secure-economic operation of a power system. More specifically, the benefits of FACTS devices in a network are evaluated in terms of four areas of power system study: system security, economic dispatch operation, maximum network loadability and electric industry deregulation. Simulations of a simple network are made to evaluate how a FACTS device can be used to increase the security region of a network. Based on this analysis, simulations are performed using the 24-bus IEEE reliability test network to assess the possible savings in generation costs, the increase in maximum network loadability and the improvements in flexibility of exchanges resulting from the use of a FACTS device in this network. The results demonstrate that FACTS devices can be used effectively to increase the security region of a network thereby allowing for a better optimum operating point in any optimization problem performed over such a region.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Li. "Study of FACTS/ESS Applications in Bulk Power System." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28465.

Full text
Abstract:
The electric power supply industry has evolved into one of the largest industries. Even though secure and reliable operation of the electric power system is fundamental to economy, social security and quality of modern life, the complicated power grid is now facing severe challenges to meet the high-level secure and reliable operation requirements. New technologies will play a major role in helping today's electric power industry to meet the above challenges. This dissertation has focused on some key technologies among them, including the emerging technologies of energy storage, controlled power electronics and wide area measurement technologies. Those technologies offer an opportunity to develop the appropriate objectives for power system control. The use of power electronics based devices with energy storage system integrated into them, such as FACTS/ESS, can provide valuable added benefits to improve stability, power quality, and reliability of power systems. The study in this dissertation has provided several guidelines for the implementation of FACTS/ESS in bulk power systems. The interest of this study lies in a wide range of FACTS/ESS technology applications in bulk power system to solve some special problems that were not solved well without the application of FACTS/ESS. The special problems we select to solve by using FACTS/ESS technology in this study include power quality problem solution by active power compensation, electrical arc furnace (EAF) induced problems solution, inter-area mode low frequency oscillation suppression, coordination of under frequency load shedding (UFLS) and under frequency governor control (UFGC), wide area voltage control. From this study, the author of this dissertation reveals the unique role that FACTS/ESS technology can play in the bulk power system stability control and power quality enhancement in power system. In this dissertation, almost all the studies are based on the real system problems, which means that the study results are special valuable to certain utilities that have those problems. The study in this dissertation can assist power industry choose the right FACTS/ESS technology for their intended functions, which will improve the survivability, minimize blackouts, and reduce interruption costs through the use of energy storage systems.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Qiang. "ANALYSIS, DESIGN, AND LABORATORY EVALUATION OF A DISTRIBUTED UNIFIED POWER FLOW CONTROLLER CONCEPT." UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_diss/347.

Full text
Abstract:
A single-phase, buck-boost based, dual-output AC-DC converter is studied in this thesis. The converter has two DC outputs with opposite polarities, which share the same ground with the input power line. The power stage performance, including the input filter, is studied and procedure to select power components is given. The circuit model is analyzed to develop appropriate control. Zerocrossing distortion of the source input current is addressed and a solution is proposed. Experimental results are satisfactory in that a high power factor line current results for steady-state operation.
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Ying-Ren, and 陳膺仁. "Use of Fuzzy Control Theory and Flexible AC Transmission System Devices to Enhance Power System Stability." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/74631371907710425783.

Full text
Abstract:
碩士
國立聯合大學
電機工程學系碩士班
94
The trend of power deregulation and distributed generation is going to increase the degree of complexity and difficulty in power system operation and control. Due to the slow response characteristics and the lack of flexibility in changing control functions, the traditional power system control methods can not fulfill the control and operational requirements of a new power system. In recent years, the fast development of high-capacity power electronic devices and digital control techniques has resulted in the possibility of implementing high-power, fast-response power flow controllers. An ac transmission system with above mentioned power electronic based power flow controllers is normally named the flexible ac transmission systems, FACTS. The main objective of this research is to investigate various control schemes, in which FACTS devices and fuzzy controllers based on intelligent control algorithms are used to improve the power system overall performance both in steady-state and transient state. In this study, only three typical FACTS controllers, i.e., Thyristor controlled series capacitor, TCSC, static var compensator, STATCOM, and the unified power flow controller, UPFC are investigated in terms of the possibility to increase the power system control performance both in steady state power flow regulations and in transient state dynamic stability enhancement. To solve the problems in choosing optimal parameters for the internal parameters of fuzzy controllers, a genetic algorithm, GA, based method has been successful applied. Comprehensive computer simulation studies based on two typical test power systems have been carried out. Results have been presented and discussed to verify the effectiveness of the proposed fuzzy controller based FACTS control schemes which have higher application flexibility and overall control performance.
APA, Harvard, Vancouver, ISO, and other styles
13

Maturu, Suresh. "Performance Evaluation Of Distance Relays For FACTS Compensated Transmission Lines." Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2084.

Full text
Abstract:
With limited enhancement or expansion of the transmission infrastructure, the contemporary power systems are operating under more stressed conditions. It becomes important to fully utilize the existing transmission system to supply load demand as much as possible, thus eliminating or reducing the need for new transmission investment. Flexible AC Transmission System (FACTS) technology provides an alternative to fully utilize the existing transmission lines as well as new and upgraded lines, by controlling power and also enhancing the power transfer capability of transmission lines. However, the implementation of FACTS controllers in the transmission system has introduced new power system dynamics that must be addressed in the area of power system protection, such as rapid changes in line impedance, power angle, line currents, transients introduced by the occurrence of fault and associated control action of the FACTS controller. Therefore, the performance of the protection system must be carefully analyzed in the presence of FACTS controllers. The thesis aims at evaluating the performance of distance relays when different types of FACTS controllers, in particular Voltage Source Converter (VSC) based FACTS controllers, are incorporated at the midpoint of the transmission system to achieve voltage profile improvement and power transfer capability. The detailed models of these controllers and their control strategies are described. The presence of FACTS controllers in the loop affects both steady state and transient components of voltage and current signals. The rapid response of FACTS controllers to different power system configurations significantly affects the apparent impedance seen by distance relays. The apparent impedance seen by distance relays would be different from that of the system without FACTS controller. Due to this, the distance relay may malfunction, resulting in unreliable operation of the power system during faults. Furthermore, the effect of FACTS controllers on distance relay operation depends on the type of FACTS controller used, the application for which it has been installed and its location in the power system. The distance relay is evaluated for different loading conditions and for various fault conditions. Simulation studies are carried out using PSCAD/EMTDC based transient simulation package.
APA, Harvard, Vancouver, ISO, and other styles
14

Balibani, Siva Kumar. "Small Signal Stability Analysis of a Power System with a Grid Connected Wind Powered Permanent Magnet Synchronous Generator (PMSG)." Thesis, 2015. http://etd.iisc.ernet.in/2005/3835.

Full text
Abstract:
Small signal oscillation has been always a major concern in the operation of power systems. In a generator, the electromechanical coupling between the rotor and the rest of the system causes it to behave in a manner similar to a spring mass damper system. Following any disturbance, such as sudden change in loads, actuations in the output of turbine and faults etc. it exhibits an oscillatory behaviour around the equilibrium state. The use of fast acting high gain AVRs and evolution of large interconnected power systems with transfer of bulk power across weak transmission links have further aggravated the problem of these low frequency oscillations. Small oscillations in the range of about 0.1Hz to 3.5Hz can persist for long periods, limiting the power transfer capability of the transmission lines. These oscillations can be reduced by incorporating auxiliary controllers on generator excitation system. Power System Stabilizers (PSSs) were developed to produce additional damping by modulating the generator excitation voltage. Designing effective PSS for all operating conditions especially in large interconnected power systems still remains a difficult and challenging task. More and more power electronic based controllers have been and will be used in power systems. Many of these controllers such as Static Var Compensators (SVCs), Static Synchronous Compensators (STATCOMs) and Unified Power Flow Controllers (UPFCs) etc., are incorporated in power transmission networks to improve its operational capability. In addition, some of the energy storage systems such as Battery Energy Storage systems (BESS), Super conducting Magnetic Energy Storage System (SMES) as well large non-conventional energy sources are also increasingly being integrated with the power grid. With large integration of these devices, there is a significant impact on system stability, more importantly on small signal oscillatory instability of the power system. This thesis primarily focuses on impact of such devices on small signal oscillatory stability of the power systems. More specifically in this thesis small signal stability analysis of a Single Machine Infinite Bus (SMIB) system with a grid connected wind powered Permanent Magnet Synchronous Generator (PMSG) has been presented. A SMIB system has been purposely chosen so that general conclusions can be obtained on the behaviour of the embedded STATCOM/Energy Source (ES) system on system stability. With a better understanding of the impact of such a system it would be probably possible to analyze more complicated multimachine power system and their impact on system stability. Small signal model of the complete system which comprises the generator, transmission network, inter connecting STATCOM, the wind power generator and all associated controllers has been developed. The performances of the system following a small disturbance at various operating conditions have been analyzed. To obtain quantitative estimates of the damping and synchronizing torques generated in the system, expressions for damping and synchronizing torque clients have been developed. With these analyses, the relative impact of the STATCOM and STATCOM with ES on system performance have been assessed. It is shown that with active and reactive power modulation capabilities effective and efficient control of small signal oscillations in power systems can be achieved.
APA, Harvard, Vancouver, ISO, and other styles
15

Yesuratnam, G. "Development Of Algorithms For Security Oriented Power System Operation." Thesis, 2007. http://hdl.handle.net/2005/573.

Full text
Abstract:
The objective of an Energy Control Center (ECC) is to ensure secure and economic operation of power system. The challenge to optimize power system operation, while maintaining system security and quality of power supply to customers, is increasing. Growing demand without matching expansion of generation and transmission facilities and more tightly interconnected power systems contribute to the increased complexity of system operation. Rising costs due to inflation and increased environmental concerns has made transmission, as well as generation systems to be operated closure to design limits, with smaller safety margins and hence greater exposure to unsatisfactory operating conditions following a disturbance. Investigations of recent blackouts indicate that the root cause of most of these major power system disturbances is voltage collapse. Information gathered and preliminary analysis, from the most recent blackout incident in North America on 14th August 2003, is pointing the finger on voltage instability due to some unexpected contingency. In this incident, reports indicate that approximately 50 million people were affected interruption from continuous supply for more than 15 hours. Most of the incidents are related to heavily stressed system where large amounts of real and reactive power are transported over long transmission lines while appropriate real and reactive power resources are not available to maintain normal system conditions. Hence, the problem of voltage stability and voltage collapse has become a major concern in power system planning and operation. Reliable operation of large scale electric power networks requires that system voltages and currents stay within design limits. Operation beyond those limits can lead to equipment failures and blackouts. In the last few decades, the problem of reactive power control for improving economy and security of power system operation has received much attention. Generally, the load bus voltages can be maintained within their permissible limits by reallocating reactive power generations in the system. This can be achieved by adjusting transformer taps, generator voltages, and switchable Ar sources. In addition, the system losses can be minimized via redistribution of reactive power in the system. Therefore, the problem of the reactive power dispatch can be optimized to improve the voltage profile and minimize the system losses as well. The Instability in power system could be relieved or at least minimized with the help of most recent developed devices called Flexible AC Transmission System (FACTS) controllers. The use of Flexible AC Transmission System (FACTS) controllers in power transmission system have led to many applications of these controllers not only to improve the stability of the existing power network resources but also provide operating flexibility to the power system. In the past, transmission systems were owned by regulated, vertically integrated utility companies. They have been designed and operated so that conditions in close proximity to security boundaries are not frequently encountered. However, in the new open access environment, operating conditions tend to be much closer to security boundaries, as transmission use is increasing in sudden and unpredictable directions. Transmission unbundling, coupled with other regulatory requirements, has made new transmission facility construction more difficult. In fact, there are numerous technical challenges emerging from the new market structure. There is an acute need for research work in the new market structure, especially in the areas of voltage security, reactive power support and congestion management. In the last few decades more attention was paid to optimal reactive power dispatch. Since the problem of reactive power optimization is non-linear in nature, nonlinear programming methods have been used to solve it. These methods work quite well for small power systems but may develop convergence problems as system size increases. Linear programming techniques with iterative schemes are certainly the most promising tools for solving these types of problems. The thesis presents efficient algorithms with different objectives for reactive power optimization. The approach adopted is an iterative scheme with successive power-flow analysis using decoupled technique, formulation and solution of the linear-programmingproblem with only upper-bound limits on the state variables. Further the thesispresents critical analysis of the three following objectives, Viz., •Minimization of the sum of the squares of the voltage deviations (Vdesired) •Minimization of sum of the squares of the voltage stability L indices (Vstability) •Minimization of real power losses (Ploss) Voltage stability problems normally occur in heavily stressed systems. While the disturbance leading to voltage collapse may be initiated by a variety of causes, the underlying problem is an inherent weakness in the power system. The factors contributing to voltage collapse are the generator reactive power /voltage control limits, load characteristics, characteristics of reactive compensation devices, and the action of the voltage control devices such as transformer On Load Tap Changers (OLTCs). Power system experiences abnormal operating conditions following a disturbance, and subsequently a reduction in the EHV level voltages at load centers will be reflected on the distribution system. The OLTCs of distribution transformers would restore distribution voltages. With each tap change operation, the MW and MVAR loading on the EHV lines would increase, thereby causing great voltage drops in EHV levels and increasing the losses. As a result, with each tap changing operation, the reactive output of generators throughout the system would increase gradually and the generators may hit their reactive power capability limits, causing voltage instability problems. Thus, the operation of certain OLTCs has a significant influence on voltage instability under some operating conditions. These transformers can be made manual to avoid possible voltage instability due to their operation during heavy load conditions. Tap blocking, based on local measurement of high voltage side of load tap changers, is a common practice of power utilities to prevent voltage collapse. The great advantage of this method is that it can be easily implemented, but does not guarantee voltage stability. So a proper approach for identification of critical OLTC s based on voltage stability criteria is essential to guide the operator in ECC, which has been proposed in this thesis. It discusses the effect of OLTCs with different objectives of reactive power dispatch and proposes a technique to identify critical OLTCs based on voltage stability criteria. The fast development of power electronics based on new and powerful semiconductor devices has led to innovative technologies, such as High Voltage DC transmission (HVDC) and Flexible AC Transmission System (FACTS), which can be applied in transmission and distribution systems. The technical and economicalBenefits of these technologies represent an alternative to the application in AC systems. Deregulation in the power industry and opening of the market for delivery of cheaper energy to the customers is creating additional requirements for the operation of power systems. HVDC and FACTS offer major advantages in meeting these requirements. .A method for co-ordinated optimum allocation of reactive power in AC/DC power systems by including FACTS controller UPFC, with an objective of minimization of the sum of the squares of the voltage deviations of all the load buses has been proposed in this thesis. The study results show that under contingency conditions, the presence of FACTS controllers has considerable impact on over all system voltage stability and also on power loss minimization.minimization of the sum of the squares of the voltage deviations of all the load buses has been proposed in this thesis. The study results show that under contingency conditions, the presence of FACTS controllers has considerable impact on over all system voltage stability and also on power loss minimization. As power systems grow in their size and interconnections, their complexity increases. For secure operation and control of power systems under normal and contingency conditions, it is essential to provide solutions in real time to the operator in ECC. For real time control of power systems, the conventional algorithmic software available in ECC are found to be inadequate as they are computationally very intensive and not organized to guide the operator during contingency conditions. Artificial Intelligence (AI) techniques such as, Expert systems, Neural Networks, Fuzzy systems are emerging decision support system tools which give fast, though approximate, but acceptable right solutions in real time as they mostly use symbolic processing with a minimum number of numeric computations. The solution thus obtained can be used as a guide by the operator in ECC for power system control. Optimum real and reactive power dispatch play an important role in the day-to-day operation of power systems. Existing conventional Optimal Power Flow (OPF) methods use all of the controls in solving the optimization problem. The operators can not move so many control devices within a reasonable time. In this context an algorithm using fuzzy-expert approach has been proposed in this thesis to curtail the number of control actions, in order to realize real time objectives in voltage/reactive power control. The technique is formulated using membership functions of linguistic variables such as voltage deviations at all the load buses and the voltage deviation sensitivity to control variables. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. Control variables considered are switchable VAR compensators, OLTC transformers and generator excitations. A fuzzy rule based system is formed to select the critical controllers, their movement direction and step size. Results show that the proposed approach is effective for improving voltage security to acceptable levels with fewer numbers of controllers. So, under emergency conditions the operator need not move all the controllers to different settings and the solution obtained is fast with significant speedups. Hence, the proposed method has the potential to be integrated for on-line implementation in energy management systems to achieve the goals of secure power system operation. In a deregulated electricity market, it may not be always possible to dispatch all of the contracted power transactions due to congestion of the transmission corridors. System operators try to manage congestion, which otherwise increases the cost of the electricity and also threatens the system security and stability. An approach for alleviation of network over loads in the day-to-day operation of power systems under deregulated environment is presented in this thesis. The control used for overload alleviation is real power generation rescheduling based on Relative Electrical Distance (RED) concept. The method estimates the relative location of load nodes with respect to the generator nodes. The contribution of each generator for a particular over loaded line is first identified , then based on RED concept the desired proportions of generations for the desired overload relieving is obtained, so that the system will have minimum transmission losses and more stability margins with respect to voltage profiles, bus angles and better transmission tariff. The results obtained reveal that the proposed method is not only effective for overload relieving but also reduces the system power loss and improves the voltage stability margin. The presented concepts are better suited for finding the utilization of resources generation/load and network by various players involved in the day-to-day operation of the system under normal and contingency conditions. This will help in finding the contribution by various players involved in the congestion management and the deviations can be used for proper tariff purposes. Suitable computer programs have been developed based on the algorithms presented in various chapters and thoroughly tested. Studies have been carried out on various equivalent systems of practical real life Indian power networks and also on some standard IEEE systems under simulated conditions. Results obtained on a modified IEEE 30 bus system, IEEE 39 bus New England system and four Indian power networks of EHV 24 bus real life equivalent power network, an equivalent of 36 bus EHV Indian western grid, Uttar Pradesh 96 bus AC/DC system and 205 Bus real life interconnected grid system of Indian southern region are presented for illustration purposes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography