Contents
Academic literature on the topic 'Flexible porous MOF'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flexible porous MOF.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flexible porous MOF"
Zhang, Junxuan, Jie You, Qing Wei, Jeong-In Han, and Zhiming Liu. "Hollow Porous CoO@Reduced Graphene Oxide Self-Supporting Flexible Membrane for High Performance Lithium-Ion Storage." Nanomaterials 13, no. 13 (2023): 1986. http://dx.doi.org/10.3390/nano13131986.
Full textSeth, Soana, Govardhan Savitha, and Jarugu Narasimha Moorthy. "Diverse isostructural MOFs by postsynthetic metal node metathesis: anionic-to-cationic framework conversion, luminescence and separation of dyes." Journal of Materials Chemistry A 3, no. 45 (2015): 22915–22. http://dx.doi.org/10.1039/c5ta04551g.
Full textLing, Yajing, Jingjing Jiao, Mingxing Zhang, et al. "A porous lanthanide metal–organic framework based on a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas adsorption." CrystEngComm 18, no. 33 (2016): 6254–61. http://dx.doi.org/10.1039/c6ce00497k.
Full textMa, Qintian, Qingyuan Yang, Aziz Ghoufi, et al. "Guest-modulation of the mechanical properties of flexible porous metal–organic frameworks." J. Mater. Chem. A 2, no. 25 (2014): 9691–98. http://dx.doi.org/10.1039/c4ta00622d.
Full textHou, Chaoyi, Yue-Ling Bai, XiaoLi Bao, et al. "A metal–organic framework constructed using a flexible tripodal ligand and tetranuclear copper cluster for sensing small molecules." Dalton Transactions 44, no. 17 (2015): 7770–73. http://dx.doi.org/10.1039/c5dt00762c.
Full textHaldar, Ritesh, and Christof Wöll. "Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures." Nano Research 14, no. 2 (2020): 355–68. http://dx.doi.org/10.1007/s12274-020-2953-z.
Full textLi, Zhen, Jingting Bu, Chenying Zhang, et al. "Electrospun carbon nanofibers embedded with MOF-derived N-doped porous carbon and ZnO quantum dots for asymmetric flexible supercapacitors." New Journal of Chemistry 45, no. 24 (2021): 10672–82. http://dx.doi.org/10.1039/d1nj01369f.
Full textDeng, Mingli, Shijun Tai, Weiquan Zhang, et al. "A self-catenated rob-type porous coordination polymer constructed from triazolate and carboxylate ligands: fluorescence response to the reversible phase transformation." CrystEngComm 17, no. 31 (2015): 6023–29. http://dx.doi.org/10.1039/c5ce00887e.
Full textLi, Zhen, Julio Fraile, Clara Viñas, Francesc Teixidor, and José G. Planas. "Post-synthetic modification of a highly flexible 3D soft porous metal–organic framework by incorporating conducting polypyrrole: enhanced MOF stability and capacitance as an electrode material." Chemical Communications 57, no. 20 (2021): 2523–26. http://dx.doi.org/10.1039/d0cc07393h.
Full textCao, Xiao-Man, Zhi-Jia Sun, Si-Yu Zhao, Bing Wang, and Zheng-Bo Han. "MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors." Materials Chemistry Frontiers 2, no. 9 (2018): 1692–99. http://dx.doi.org/10.1039/c8qm00284c.
Full text