Journal articles on the topic 'Flexible printed structures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Flexible printed structures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Iryna, ZHARIKOVA, NEVLIUDOVA Viktoriia, and CHALA Olena. "FLEXIBLE PRINTED STRUCTURES QUALITY MODELS FOR MOBILE ROBOT PLATFORM." Journal of Natural Science and Technologies 1, no. 1 (2022): 77–84. https://doi.org/10.5281/zenodo.7253386.
Full textTrudeau, Charles, Martin Bolduc, Patrick Beaupré, Patrice Topart, Christine Alain, and Sylvain Cloutier. "Inkjet-Printed Flexible Active Multilayered Structures." MRS Advances 2, no. 18 (2017): 1015–20. http://dx.doi.org/10.1557/adv.2017.237.
Full textLee, Heechan, Youngdo Kim, Jiwoo Kim, Su Young Moon, and Jea Uk Lee. "Consecutive Ink Writing of Conducting Polymer and Graphene Composite Electrodes for Foldable Electronics-Related Applications." Polymers 14, no. 23 (2022): 5294. http://dx.doi.org/10.3390/polym14235294.
Full textWolterink, Gerjan, Pedro Dias, Remco G. P. Sanders, et al. "Development of Soft sEMG Sensing Structures Using 3D-Printing Technologies." Sensors 20, no. 15 (2020): 4292. http://dx.doi.org/10.3390/s20154292.
Full textBarmpakos, Dimitris, Vassiliki Belessi, Rayner Schelwald, and Grigoris Kaltsas. "Evaluation of Inkjet-Printed Reduced and Functionalized Water-Dispersible Graphene Oxide and Graphene on Polymer Substrate—Application to Printed Temperature Sensors." Nanomaterials 11, no. 8 (2021): 2025. http://dx.doi.org/10.3390/nano11082025.
Full textVelcescu, Andrei, Alexander Lindley, Ciro Cursio, et al. "Flexible 3D-Printed EEG Electrodes." Sensors 19, no. 7 (2019): 1650. http://dx.doi.org/10.3390/s19071650.
Full textNEVLIUDOV, Igor, Iryna ZHARIKOVA, Sergiy NOVOSELOV, Dmytro NIKITIN, and Rauf ALLAKHVERANOV. "SIMULATION OF FLEXIBLE PRINTED STRUCTURES DESIGN FOR MOBILE ROBOT PLATFORM." Journal of Natural Sciences and Technologies 2, no. 2 (2023): 242–46. https://doi.org/10.5281/zenodo.10362385.
Full textBartsch, Valérie, Volkmar von Arnim, Sven Kuijpens, Michael Haupt, Thomas Stegmaier, and Götz T. Gresser. "New Flexible Protective Coating for Printed Smart Textiles." Applied Sciences 11, no. 2 (2021): 664. http://dx.doi.org/10.3390/app11020664.
Full textVasileva, Fedora, Vasiliy Popov, Irina Antonova, and Svetlana Smagulova. "Screen-Printed Structures from a Highly Conductive Mildly Oxidized Graphene Suspension for Flexible Electronics." Materials 15, no. 3 (2022): 1256. http://dx.doi.org/10.3390/ma15031256.
Full textHassan, Rizwan Ul, Shaheer Mohiuddin Khalil, Saeed Ahmed Khan, et al. "High-Resolution, Transparent, and Flexible Printing of Polydimethylsiloxane via Electrohydrodynamic Jet Printing for Conductive Electronic Device Applications." Polymers 14, no. 20 (2022): 4373. http://dx.doi.org/10.3390/polym14204373.
Full textSagu, Jagdeep S., Nicola York, Darren Southee, and K. G. U. Wijayantha. "Printed electrodes for flexible, light-weight solid-state supercapacitors – a feasibility study." Circuit World 41, no. 2 (2015): 80–86. http://dx.doi.org/10.1108/cw-01-2015-0004.
Full textTasolamprou, Anna C., Despoina Mentzaki, Zacharias Viskadourakis, Eleftherios N. Economou, Maria Kafesaki, and George Kenanakis. "Flexible 3D Printed Conductive Metamaterial Units for Electromagnetic Applications in Microwaves." Materials 13, no. 17 (2020): 3879. http://dx.doi.org/10.3390/ma13173879.
Full textChen, Yuan, Zhengyang Yu, Hale Oguzlu, et al. "Superelastic and flexible 3D printed waterborne polyurethane/cellulose nanofibrils structures." Additive Manufacturing 46 (October 2021): 102107. http://dx.doi.org/10.1016/j.addma.2021.102107.
Full textRuiz, Carlos, Karteek Kadimisetty, Kun Yin, Michael G. Mauk, Hui Zhao, and Changchun Liu. "Fabrication of Hard–Soft Microfluidic Devices Using Hybrid 3D Printing." Micromachines 11, no. 6 (2020): 567. http://dx.doi.org/10.3390/mi11060567.
Full textWan, Xi, Mingliang Gao, Shijia Xu, et al. "Inkjet-printed TMDC–graphene heterostructures for flexible and broadband photodetectors." Journal of Applied Physics 131, no. 23 (2022): 234303. http://dx.doi.org/10.1063/5.0093882.
Full textFalco, Aniello, Francisco J. Romero, Florin C. Loghin, et al. "Printed and Flexible Microheaters Based on Carbon Nanotubes." Nanomaterials 10, no. 9 (2020): 1879. http://dx.doi.org/10.3390/nano10091879.
Full textGrigaleviciute, Giedre, Daiva Baltriukiene, Virginija Bukelskiene, and Mangirdas Malinauskas. "Biocompatibility Evaluation and Enhancement of Elastomeric Coatings Made Using Table-Top Optical 3D Printer." Coatings 10, no. 3 (2020): 254. http://dx.doi.org/10.3390/coatings10030254.
Full textKim, Dongkeun, Arif Hussain, Hee-Lak Lee, Yoon-Jae Moon, Junyoung Hwang, and Seung-Jae Moon. "Stepwise Current Increment Sintering of Silver Nanoparticle Structures." Crystals 11, no. 10 (2021): 1264. http://dx.doi.org/10.3390/cryst11101264.
Full textKim, Namsoo Peter. "3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane." Polymers 12, no. 6 (2020): 1224. http://dx.doi.org/10.3390/polym12061224.
Full textSingaraju, Surya A., Dennis D. Weller, Thurid S. Gspann, Jasmin Aghassi-Hagmann, and Mehdi B. Tahoori. "Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing." Sensors 22, no. 11 (2022): 4000. http://dx.doi.org/10.3390/s22114000.
Full textMaturi, Mirko, Carolina Pulignani, Erica Locatelli, et al. "Phosphorescent bio-based resin for digital light processing (DLP) 3D-printing." Green Chemistry 22, no. 18 (2020): 6212–24. http://dx.doi.org/10.1039/d0gc01983f.
Full textRybansky, David, Pavel Marsalek, Martin Sotola, et al. "Design and Behavior of Lightweight Flexible Structure with Spatial Pattern Reducing Contact Surface Fraction." Polymers 15, no. 19 (2023): 3896. http://dx.doi.org/10.3390/polym15193896.
Full textMarsalek, Pavel, Martin Sotola, David Rybansky, et al. "Modeling and Testing of Flexible Structures with Selected Planar Patterns Used in Biomedical Applications." Materials 14, no. 1 (2020): 140. http://dx.doi.org/10.3390/ma14010140.
Full textLi, Nan, Chenhao Xue, Shenggui Chen, et al. "3D Printing of Flexible Mechanical Metamaterials: Synergistic Design of Process and Geometric Parameters." Polymers 15, no. 23 (2023): 4523. http://dx.doi.org/10.3390/polym15234523.
Full textTahmasebinia, Faham, Amir Abbas Jabbari, and Krzysztof Skrzypkowski. "The Application of Finite Element Simulation and 3D Printing in Structural Design within Construction Industry 4.0." Applied Sciences 13, no. 6 (2023): 3929. http://dx.doi.org/10.3390/app13063929.
Full textTomaszewski, Grzegorz, Piotr Jankowski-Mihułowicz, Mariusz Węglarski, and Wojciech Lichoń. "Inkjet-printed flexible RFID antenna for UHF RFID transponders." Materials Science-Poland 34, no. 4 (2016): 760–69. http://dx.doi.org/10.1515/msp-2016-0097.
Full textKong, Lingxian, Shijie Wang, Qi Su, et al. "Printed Two-Dimensional Materials for Flexible Photodetectors: Materials, Processes, and Applications." Sensors 25, no. 4 (2025): 1042. https://doi.org/10.3390/s25041042.
Full textApostolakis, Apostolos, Dimitris Barmpakos, Aggelos Pilatis, et al. "Resistivity study of inkjet-printed structures and electrical interfacing on flexible substrates." Micro and Nano Engineering 15 (June 2022): 100129. http://dx.doi.org/10.1016/j.mne.2022.100129.
Full textLin, Chien-Hung, and Bo-Yi Guo. "Investigating capacitive force sensors with 3D printed flexible structures as dielectric layers." Materials Research Express 10, no. 8 (2023): 085302. http://dx.doi.org/10.1088/2053-1591/acead6.
Full textLiu, Jing, Lingquan Hu, Kin-Wa Lui, Sidney Wing-fai Wong, and Shou-xiang Jiang. "Design and characterization of breathable 3D printed textiles with flexible lattice structures." Journal of Manufacturing Processes 141 (May 2025): 48–58. https://doi.org/10.1016/j.jmapro.2025.02.062.
Full textSajadi, Seyed Mohammad, Lívia Vásárhelyi, Reza Mousavi, et al. "Damage-tolerant 3D-printed ceramics via conformal coating." Science Advances 7, no. 28 (2021): eabc5028. http://dx.doi.org/10.1126/sciadv.abc5028.
Full textKetelsen, Bendix, Patrick P. Tjarks, Hendrik Schlicke, Ying-Chih Liao, and Tobias Vossmeyer. "Fully Printed Flexible Chemiresistors with Tunable Selectivity Based on Gold Nanoparticles." Chemosensors 8, no. 4 (2020): 116. http://dx.doi.org/10.3390/chemosensors8040116.
Full textAndreozzi, Marina, Carlo Bruni, Archimede Forcellese, Serena Gentili, and Alessio Vita. "Compression Behavior of 3D Printed Composite Isogrid Structures." Polymers 16, no. 19 (2024): 2747. http://dx.doi.org/10.3390/polym16192747.
Full textLee, Hajun, Yeonwoo Jang, Jun Kyu Choe, et al. "3D-printed programmable tensegrity for soft robotics." Science Robotics 5, no. 45 (2020): eaay9024. http://dx.doi.org/10.1126/scirobotics.aay9024.
Full textTanim, Md, and Anahita Emami. "Tailoring Piezoresistive Performance in 3D-Printed Nanocomposite Sensors Through Cellular Geometries." Applied Nano 5, no. 4 (2024): 258–78. http://dx.doi.org/10.3390/applnano5040017.
Full textRen, Yi, Minghui Duan, Rui Guo, and Jing Liu. "Printed Transformable Liquid-Metal Metamaterials and Their Application in Biomedical Sensing." Sensors 21, no. 19 (2021): 6329. http://dx.doi.org/10.3390/s21196329.
Full textHuang, Jiazhao, Rocky Gipson, Chengcheng Wang, Su Xia Zhang, Subhash Guddati, and Sharon Mui Ling Nai. "Emerging 3D-printed zeolitic gas adsorbents." Materials Science in Additive Manufacturing 2, no. 4 (2023): 1880. http://dx.doi.org/10.36922/msam.1880.
Full textPolsakiewicz, D., and W. Kollenberg. "Comparison of Silver Sources for Silver/Glass Compounds by Multi-Material 3D-Printing." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, CICMT (2015): 000305–13. http://dx.doi.org/10.4071/cicmt-tha31.
Full textDijkshoorn, Alexander, Patrick Werkman, Marcel Welleweerd, et al. "Embedded sensing: integrating sensors in 3-D printed structures." Journal of Sensors and Sensor Systems 7, no. 1 (2018): 169–81. http://dx.doi.org/10.5194/jsss-7-169-2018.
Full textKabir, Shahbaj, Yu Li, and Young-A. Lee. "The Effect of Orientation Angle of Center Facing Arm on Elongation of 3D-Printed Auxetic-Structure Textiles." Textiles 5, no. 3 (2025): 25. https://doi.org/10.3390/textiles5030025.
Full textOh, Sang-Jin, Yejin Jo, Eun Jung Lee, et al. "Ambient atmosphere-processable, printable Cu electrodes for flexible device applications: structural welding on a millisecond timescale of surface oxide-free Cu nanoparticles." Nanoscale 7, no. 9 (2015): 3997–4004. http://dx.doi.org/10.1039/c4nr06816e.
Full textCheng, Tao, You‐Wei Wu, Ya‐Li Chen, Yi‐Zhou Zhang, Wen‐Yong Lai, and Wei Huang. "Inkjet‐Printed High‐Performance Flexible Micro‐Supercapacitors with Porous Nanofiber‐Like Electrode Structures." Small 15, no. 34 (2019): 1901830. http://dx.doi.org/10.1002/smll.201901830.
Full textWadhwa, Arjun, Jaime Benavides-Guerrero, Mathieu Gratuze, Martin Bolduc, and Sylvain G. Cloutier. "All Screen Printed and Flexible Silicon Carbide NTC Thermistors for Temperature Sensing Applications." Materials 17, no. 11 (2024): 2489. http://dx.doi.org/10.3390/ma17112489.
Full textAdeyeye, Ajibayo, Aline Eid, Jimmy Hester, et al. "Additively Manufactured Inkjet-/3D-/4D-Printed Wireless Sensors Modules." International Journal of High Speed Electronics and Systems 27, no. 01n02 (2018): 1840012. http://dx.doi.org/10.1142/s0129156418400128.
Full textSpahiu, Tatjana, Eriseta Canaj, and Ermira Shehi. "3D printing for clothing production." Journal of Engineered Fibers and Fabrics 15 (January 2020): 155892502094821. http://dx.doi.org/10.1177/1558925020948216.
Full textJanek, Florian, Nadine Eichhorn, Sascha Weser, Kerstin Gläser, Wolfgang Eberhardt, and André Zimmermann. "Embedding of Ultrathin Chips in Highly Flexible, Photosensitive Solder Mask Resist." Micromachines 12, no. 8 (2021): 856. http://dx.doi.org/10.3390/mi12080856.
Full textCui, Yepu, Eui Min Jung, Ajibayo Adeyeye, Charles Lynch, Xuanke He, and Manos Tentzeris. "Additively Manufactured RF Devices for 5G, IoT, RFID, WSN, and Smart City Applications." International Journal of High Speed Electronics and Systems 29, no. 01n04 (2020): 2040016. http://dx.doi.org/10.1142/s0129156420400169.
Full textTu, Zhige, Zhidong Xia, Weichu Luo, Pei Huang, and Jian Lin. "Structural design of flexible interdigital capacitor based upon 3D printing and spraying process." Smart Materials and Structures 31, no. 4 (2022): 045005. http://dx.doi.org/10.1088/1361-665x/ac5457.
Full textMonne, Mahmuda Akter, Chandan Qumar Howlader, Bhagyashree Mishra, and Maggie Yihong Chen. "Synthesis of Printable Polyvinyl Alcohol for Aerosol Jet and Inkjet Printing Technology." Micromachines 12, no. 2 (2021): 220. http://dx.doi.org/10.3390/mi12020220.
Full textQiu, Lin, Yuhao Ma, Yuxin Ouyang, Yanhui Feng та Xinxin Zhang. "Freestanding Flexible Sensor Based on 3ω Technique for Anisotropic Thermal Conductivity Measurement of Potassium Dihydrogen Phosphate Crystal". Sensors 21, № 23 (2021): 7968. http://dx.doi.org/10.3390/s21237968.
Full text