Academic literature on the topic 'Float glass forming process'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Float glass forming process.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Float glass forming process"

1

Shou, Peng, Ren Hongcan, Cao Xin, and Yang Yong. "Continuous forming of ultrathin glass by float process." International Journal of Applied Glass Science 10, no. 3 (March 30, 2019): 275–86. http://dx.doi.org/10.1111/ijag.13132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fernández Oro, J. M., K. M. Argüelles Díaz, C. Santolaria Morros, A. F. Cobo Hedilla, and M. Lemaille. "Multiphase modelling of pouring glass over the spout lip of an industrial float in the flat glass forming process." International Journal for Numerical Methods in Fluids 58, no. 10 (December 10, 2008): 1147–77. http://dx.doi.org/10.1002/fld.1793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Tian Feng, Ji Wang Yan, and Tsunemoto Kuriyagawa. "Comparing Microgroove Array Forming with Micropyramid Array Forming in the Glass Molding Press." Key Engineering Materials 447-448 (September 2010): 361–65. http://dx.doi.org/10.4028/www.scientific.net/kem.447-448.361.

Full text
Abstract:
This paper presents a glass molding press (GMP) method to fabricate microgroove array and micropyramid array on the glass plate by replicating the shape of the mold to the glass surface. The differences between microgroove forming and micropyramid forming were investigated by experiments and finite element method (FEM) simulations. Microgroove arrays and micropyramid arrays were generated on the flat glass plate in the GMP process by using an electroless-plated Nickel Phosphorus (Ni-P) mold, on which the microstructures are fabricated by micro cutting. Furthermore, FEM simulations were used to trace the stress distribution and the strain distribution during the glass deformation, which illustrates the glass material flow in the microgrooves and the micropyramids on the mold during pressing. By comparing the processes between microgroove forming and micropyramid forming, the differences between them observed in the experiments were explained by the simulation results. Finally, some techniques to improve the forming accuracy were proposed.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, H. M., G. D. Xi, and D. Q. Li. "Residual Thermal Stresses Simulation of Television Panel in the Forming Process. Part 1: Modelling." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220, no. 5 (May 1, 2006): 573–82. http://dx.doi.org/10.1243/09544062jmes141a.

Full text
Abstract:
Internal residual stresses in glass-pressed components such as television panel are mainly frozen in thermal stresses because of inhomogeneous cooling when surface layers stiffen sooner than the core region as in free quenching. Additional factors in pressing are the effects of melt pressure history and mechanical restraints of the mould. The solidification of a molten layer of glass between cooled parallel plates is used to model the mechanics of the buildup of residual stresses in the pressing process. Flow effects are neglected, and a thermorheologically simple thermoviscoelastic material model is assumed. The equilibrium thermomechanical properties of the material and the shift function can be temperature- and pressure-dependent. The finite-element method employed in the numerical simulation is based on the theory of shells, as an assembly of flat elements. The approach allows the prediction of residual deformations and residual stresses layer by layer like a truly three-dimensional calculation while reducing the computational cost significantly.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, J. H., and J. H. Vogel. "An Investigation of the Formability of Long Fiber Thermoplastic Composite Sheets." Journal of Engineering Materials and Technology 117, no. 1 (January 1, 1995): 127–32. http://dx.doi.org/10.1115/1.2804363.

Full text
Abstract:
An experimental and analytical investigation was undertaken to improve understanding of the form of long fiber reinforced thermoplastic sheets. The materials tested contained 30 percent by weight of glass fibers in a polypropylene matrix, with the fibers approximately randomly oriented in the plane of sheet. The forming tests covered a range of forming temperatures between the glass transition temperature and the melting point of the polypropylene matrix. The testing geometry was that of a Swift flat-bottomed cup test, which primarily tests bending and drawing behavior of the sheet. An analysis of the process was developed in terms of a continuum model of material behavior with normal anisotropy and rotational symmetry. Results of the forming tests are compared with analytical predictions. Limitations of both the form of the material and the modeling approach are discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Sachs, Ulrich, Sebastiaan P. Haanappel, Bert Rietman, Rene Ten Thije, and Remko Akkerman. "Formability of Fiber-Reinforced Thermoplastics in Hot Press Forming Process Based on Friction Properties." Key Engineering Materials 554-557 (June 2013): 501–6. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.501.

Full text
Abstract:
High performance composites are used in commercial applications in a steadily growing degree. This increase of advanced materials is accomponied with the development of fully automated fabrication processes. It aims to drive down the time and costs of the production while ensuring a high quality of the product. This can achieved by considering the process of hot press forming with continuous fiber reinforced thermoplastics. The development of the process is, however, accompanied with a few difficulties, which require more research. For example, composite materials with different architectures, lay-ups, and constituents, show large differences in formability. This research examines the effect of friction on the formability of thermoplastic composites. Both experiments and simulations were conducted. Demonstrator products have been press-formed from laminates with different materials and architectures (UD-carbon PEEK, UD-carbon-PEI, 8hs-glass PPS, 5hs-carbon PEEK and UD-glass PPS), to investigate their effects on formability. Creating a doubly curved shape from a flat laminate requires at least three deformation mechanisms, namely in-plane shear, bending and inter-ply slippage This paper focuses on the sliding mechanism and the corresponding friction. In order to quantify the amount of sliding in the press-formed product, a dot pattern has been applied to both surfaces of the laminate. The slip between the outer plies can be analyzed by means of photogrammetry. Besides, the friction coefficient of each material is measured in a special designed friction test set-up. It can be seen that the composite formability is directly linked to its friction properties. FE simulations of the press-form process will be performed based on the measured material properties, to demonstrate the influence of the materials friction coefficient.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Qin, Zejing Chen, and Zhixin Li. "Simulation of tin penetration in the float glass process (float glass tin penetration)." Applied Thermal Engineering 31, no. 6-7 (May 2011): 1272–78. http://dx.doi.org/10.1016/j.applthermaleng.2010.12.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kozeruk, A. S., R. Orlandos Dias Gonsales, A. A. Sukhotski, and M. I. Marina I. Philonova. "Simulation of axicon processing area on technological equipment." Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, no. 3 (October 21, 2020): 365–74. http://dx.doi.org/10.29235/1561-8358-2020-65-3-365-374.

Full text
Abstract:
Annotation. An analytical expression is obtained for engineering calculation of the regularities of removing the allowance from the flat surface of the part (a rectangle in the form of a flat glass plate of considerable thickness with holes for axicon blanks), which participates in relative and portable movement on the surface of a rotating tool (faceplate) and is in a power circuit with it, which provides automatic self-installation of lapping surfaces. A scheme is proposed for dividing the lapping surfaces of a flat tool and part into ring zones and sectors, resulting in the formation of elementary platforms with reference (calculated) points in their center. Analytical expressions are obtained for calculating the coordinates of these points. The kinematics of the relative movement of the tool and the straightener without oscillation of the upper link is considered, while the sliding of the conjugate surfaces takes place due to rotation of the tool and the straightener installed with a certain eccentricity. An expression is obtained for determining the sliding speed at any point of contact of the conjugate surfaces. Modeling when dealing with relative and portable movement of the upper unit, which allowed obtaining a formula for the slip velocity of the straightener relative to the tool that allows calculation the path of friction in a particular zone in different modes of operation of technological equipment. Modeling can be used as the basis for creating a method for controlling the process of forming conical optical parts (axicons) on serial lever grinding and polishing machines with a flat tool under free lapping conditions, which provide the possibility of obtaining axicons with a deviation of the forming cone from the straightness of no more than ±0.00012 mm.
APA, Harvard, Vancouver, ISO, and other styles
9

Kondrashov, V. I., E. V. Fainberg, and V. S. Bezlyudnaya. "Development of float process in sheet glass production." Glass and Ceramics 57, no. 5-6 (May 2000): 195–98. http://dx.doi.org/10.1007/bf02681276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ling, Shao Hua, Chang Yong Jing, and Xiao Liang Li. "Float Glass Production Line Cleaner Production Opportunities Analysis." Advanced Materials Research 726-731 (August 2013): 3180–84. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.3180.

Full text
Abstract:
Float glass production line of a company, for example, cleaner production audit analysis. For glass production process, the the process sewage node and pollutants governance status quo, analysis of the clean production levels of the glass production process on the basis of material balance, and found the opportunity of clean production, float glass production, energy conservation, energy, pollution reduction and efficiency as a starting point, the glass production process cleaner production.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Float glass forming process"

1

Pop, Serban Rares. "Modeling and simulation of the float glass process." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976517108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hajput, S. K. "Modelling of glass container forming process." Thesis, University of Bradford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Busuladzic, Ines. "TWO-DIMENSIONAL HEAT TRANSFER AND THERMAL STRESS ANALYSIS IN THE FLOAT GLASS PROCESS." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1176767377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Yang. "Thermal Forming Process for Precision Freeform Optical Mirrors and Micro Glass Optics." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1267477993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Van, Iseghem Mike. "Simulation of a glass forming process : application to the assembling of electron guns." ENSMP, 2000. http://www.theses.fr/2000ENMP0997.

Full text
Abstract:
In the electron gun assembling process, metals grids are inserted into preheated glass. The 2D numerical model proposed in this work takes into account most of the thermo-mechanical phenomena. It allows computing the thermal gradients in the glass, its flows around the metal claws, and the residual stresses in both components. A Maxwell model is used for the description of the visco-elastic behaviour of glass. A nodal master/slave algorithm for both mechanical sliding and heat transfer at the glass/metal interface is proposed, so providing a direct resolution of the coupled problem. The identification of the unknown material and interface properties is first studied in simplified experiences of ID heat transfer and by photo-elastic observations of a glass/metal sample. Next, these properties, as well as the unknown boundary conditions of the process are identified by inverse analyses, using experimental data obtained on a pilot line. The interpretation of the residual stresses predicted by our model and its sensitivity to the parameters allows describing the mechanisms of anchoring. The importance of the thermal cycle of both components as well as the metal and geometry of the claws is clearly shown. This allows suggesting technological improvements of the anchoring in electron guns and of the production process
La fabrication des canons éléctroniques consiste à indenter des grilles métalliques dans du verre préalablement chauffé. Le modèle numérique en 2d que nous proposons dans ce travail prend en compte les phénomènes thermo-mécaniques qui mènent à l'établissement d'un gradient de température dans le verre, son écoulement autour de la griffe métallique ainsi qu'au développement des contraintes résiduelles dans le verre et dans le métal. Pour le comportement visco-élastique du verre, une loi de Maxwell a été choisie. Le contact est géré par un algorithme de type maître/esclave, exprimé aux noeuds de l'interface verre/métal, tant pour le frottement mécanique que pour le transfert thermique. Les propriétes inconnues des matériaux et de l'interface sont d'abord étudiées dans des expériences de transfert thermique 1d et de photo-élasticimétrie sur un assemblage simplifié verre/métal. Ensuite, celles-ci, ainsi que les conditions aux limites inconnues du procédé, ont été identifiées par analyses inverses avec des mesures expérimentales sur la ligne pilote. Les contraintes résiduelles prévues par notre modèle et leur sensibilité aux paramètres nous a permis de décrire les mécanismes d'ancrage. L'importance des cycles thermiques, du choix du métal et de la géometrie des griffes sont mis en évidence. Cela nous permet de proposer des améliorations technologiques du procédé de fabrication et de la qualité de l'ancrage des canons a électrons
APA, Harvard, Vancouver, ISO, and other styles
6

Ansbergs, Christa R. 1976. "Optimization of the glass fiber forming process for single-tip and small-number-tip positions." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/41028.

Full text
Abstract:
Thesis (S.M. and S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1999.
Includes bibliographical references (p. 93).
The design of fiberglass manufacturing setups has evolved largely by trial and error. Efforts are now in place to achieve a better understanding of the fiber forming process. To facilitate this research, a smaller and simpler version of the full-scale fiber forming process is being used. This system has vastly different geometry and produces a small number of fibers. Work in this project has concerned optimization of the small-scale process to more closely match the behavior to production line fiberglass forming positions, such that results of experiments on the smaller system are applicable to the full scale system. Efforts were also put into simplification of the system, such that process variables can more easily be isolated for further study. The primary effort of this project was put into controlling glass head pressure. On the full-scale system constant glass depth is maintained and the glass weight controls the flow rate of glass through the fiber forming tips. On the small system flow rate is controlled by a combination of changing glass weight and added air pressure. The pressure control system developed in this project uses glass resistance to measure glass depth and outputs a signal to a solenoid valve to add the appropriate amount of air pressure above the glass. The glass resistance measuring system had to be calibrated for a range of temperatures. Resistance data was collected while mass flow of glass was monitored. From the mass flow glass depth was calculated to an accuracy of 3%. When set to simulate the full-scale fiberglass forming operation the pressure control valve can control pressure to within 4.5% of 5.5 kPa required pressure. A new fiber winding system was designed and implemented. This system assures even distribution of fibers along the axis of a winder drum, speed control to within 1%, and limited vibration transmission to the fibers while they are in the forming and cooling regions. The pressure control and winder control systems were incorporated into the same LabView interface to assure ease of use. From the interface an operator can set winder speed and total head pressure and monitor the control of both to assure that the system is behaving appropriately.
by Christa R. Ansbergs.
S.M.and S.B.
APA, Harvard, Vancouver, ISO, and other styles
7

Bricknell, David John. "Elusive decisions : a case study of intuitive strategic decision making in the exploitation of the Pilkington float glass process, 1952-1987." Thesis, Manchester Metropolitan University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Biosca, Mecías Adrià. "Numerical and Experimental Study of Glass in the Blow and Blow Forming Process for the Prediction of Thickness Distributions in Glass Perfume Containers." Doctoral thesis, Universitat Ramon Llull, 2020. http://hdl.handle.net/10803/668793.

Full text
Abstract:
El disseny del motlle preparador és un punt crític en el desenvolupament de nous flascons ja que defineix la distribució d’espessors de vidre en les ampolles fabricades. Tot i això, el disseny d’aquestes cavitats encara es basa en el coneixement empíric i la metodologia d’assaig i error. Per aquestes raons, diverses proves de fabricació poden ser necessàries, les quals impliquen temps no productius i allarguen el temps de desenvolupament. Ramon Clemente és un fabricant de flascons de vidre que vol escurçar el buit actual entre l’experiència dels vidriers i el coneixement científic de les simulacions numèriques. L’objectiu és implementar un model que descrigui numèricament el comportament termomecànic del vidre en el procés de fabricació per bufat-bufat per predir la distribució d’espessors en els flascons. Així doncs, aquesta tesi es centra en un estudi numèric i experimental de la producció d’ampolles de vidre. Emprant una càmera termogràfica es van realitzar anàlisis tèrmiques sota condicions reals de fabricació. Aquestes inclogueren mesures experimentals de la gota de vidre, parison i flascons acabats en tot el procés productiu. A més, les operacions de conformat i les propietats del vidre definiren un marc teòric per modelar numèricament el procés de bufat-bufat amb ANSYS Polyflow. Posteriorment, es varen implementar dos models numèrics. Primer, un assaig de caiguda de la gota proporcionà una descripció del flux de vidre al llarg del temps per validar la caracterització de la viscositat i el flux no isotèrmic i newtonià previst per les simulacions. Desprès, un model numèric del procés de bufat-bufat per predir el repartiment d’espessors de vidre en els envasos fabricats. Els resultats numèrics es van correlacionar amb temperatures experimentals del vidre i amb els gruixos dels flascons tallats. Els resultats obtinguts permeten tenir una millor comprensió del comportament termomecànic del vidre dins de les cavitats dels motlles. A més, les simulacions predigueren correctament la distribució d’espessors al final del procés, en funció del disseny del motlle preparador i de les condicions de fabricació, tant en el model axisimètric com tridimensional. La validació del model numèric en tres dimensions és molt important per a Ramon Clemente, ja que obre la porta a predir numèricament els gruixos de flascons amb geometries complexes en lloc de limitar-se a ampolles axisimètriques. Per tant, permetent desenvolupar nous flascons de vidre pel sector de la perfumeria de forma més ràpida i de millor qualitat.
El diseño del molde preparador es un punto crítico en el desarrollo de nuevos frascos ya que define la distribución de espesores de vidrio en las botellas fabricadas. Todo y eso, el diseño de estas cavidades aún se basa en el conocimiento empírico y la metodología de ensayo y error. Por estas razones, pueden ser necesarias varias pruebas de fabricación, las cuales implican tiempo no productivo y alargan el tiempo de desarrollo. Ramon Clemente es un fabricante de frascos de vidrio que quiere reducir el vacio actual entre la experiencia de los vidrieros y el conocimiento científico de las simulaciones numéricas. El objetivo es implementar un modelo que describa numéricamente el comportamiento termo-mecánico del vidrio en el proceso de fabricación por soplado-soplado para predecir la distribución de grosores en los frascos. Así pues, esta tesis se centra en un estudio numérico y experimental de la producción de botellas de vidrio. Usando una cámara termográfica se realizaron análisis térmicos bajo condiciones reales de fabricación. Éstas incluyeron medidas experimentales de la gota de vidrio, parison y frascos acabados durante el proceso productivo. Además, las operaciones de conformado y las propiedades del vidrio definieron un marco teórico para modelar numéricamente el proceso de soplado-soplado con ANSYS Polyflow. Posteriormente, se implementaron dos modelos numéricos. Primero, un ensayo de caída de la gota proporcionó una descripción del flujo de vidrio a lo largo del tiempo para validar la caracterización de la viscosidad y el flujo no isotérmico y newtoniano previsto por las simulaciones. Después, un modelo numérico del proceso de soplado-soplado para predecir el reparto de espesores de vidrio en los envases fabricados. Los resultados numéricos se correlacionaron con temperaturas experimentales del vidrio y con los grosores de los frascos cortados. Los resultados obtenidos permiten tener una mejor comprensión del comportamiento termo-mecánico del vidrio dentro de las cavidades de los moldes. Además, las simulaciones predijeron correctamente la distribución de espesores al final del proceso, en función del diseño del molde preparador y de las condiciones de fabricación, tanto en el modelo axisimétrico cómo tridimensional. La validación del modelo numérico en tres dimensiones es muy importante para Ramon Clemente, ya que abre las puertas a predecir numéricamente los grosores de los frascos con geometrías complejas en lugar de limitarse a botellas axisimétricas. Por lo tanto, permitiendo desarrollar nuevos frascos de vidrio para el sector de la perfumería de forma más rápida y de mejor calidad.
The design of the blank mold cavity is a critical step in the development of new perfume containers as it defines the glass thickness distribution of the manufactured bottles. Despite that, mold cavity design is still based on empirical knowledge and trial and error. Hence, several manufacturing tests may be required, which increase time to market and involve significant downtimes. Ramon Clemente is a glass manufacturing company that wants to bridge the gap between industrial experience in glassmaking and scientific and engineering knowledge present in numerical simulations. The goal is to implement a numerical model to describe the thermo-mechanical behavior of glass during the blow and blow forming process and predict the glass thickness distribution of the manufactured bottles. Therefore, this thesis focuses on a numerical and experimental study of the production of glass perfume containers. Then, thermal analyses were performed using an infrared thermal camera under industrial manufacturing conditions. These included experimental measurements of the glass gob, parison and final container throughout the forming process. In addition, forming operations and glass properties defined a framework to numerically model the blow and blow forming process using ANSYS Polyflow. Subsequently, two numerical models were implemented. First, a gob drop test to provide a description of the glass flow over time to validate the characterized viscosity and the Newtonian non-isothermal flow predicted by the simulations. Later, a numerical model of the blow and blow forming process to predict the glass thickness distribution of the manufactured containers. Numerical results were correlated with experimental glass temperatures and thickness distributions of sectioned containers. Results lead to gain a better understanding of the thermo-mechanical behavior of glass inside the mold cavities. Moreover, simulations successfully predicted the thickness distribution after the container forming process, showing the influence of the blank mold cavity and process conditions in both axisymmetric and three-dimensional models. Validation of the 3D model has strong implications for Ramon Clemente, as it paves the way for numerically predicting the glass thicknesses of complex perfume containers instead of being limited to axisymmetric bottles. Therefore, allowing to develop new glass containers faster and of better quality.
APA, Harvard, Vancouver, ISO, and other styles
9

Steinbock, L. J., S. Krishnan, R. D. Bulushev, S. Borgeaud, M. Blokesch, L. Feletti, and A. Radenovic. "Probing the size of proteins with glass nanopores." Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36309.

Full text
Abstract:
Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing process
APA, Harvard, Vancouver, ISO, and other styles
10

François, Emmanuel. "Modèles éléments finis du formage du verre par procédés Press-bend et Blow-bend : Optimisation des paramètres process par méthode inverse." Valenciennes, 1997. https://ged.uphf.fr/nuxeo/site/esupversions/0caa37a3-30f2-4654-b2ac-dde557896c18.

Full text
Abstract:
Pour prévoir et mettre au point la mise en forme d'objets en verre à partir de feuilles plates, les simulations numériques par éléments finis sont développées pour deux grands procédés, le Press-bend et le Blow-bend. Ces deux procédés, utilisés actuellement par les fabricants verriers, comportent deux phases essentielles: le pressage et le fluage pour le premier, le soufflage et le fluage pour le second. Ces modes de production nécessitent la maitrise d'un nombre important de paramètres. Les délais de conception et la minimisation des couts de revient limitent le nombre de mises au point expérimentales. C'est à ce niveau que les simulations numériques en tant qu'outil d'étude de faisabilité et d'optimisation, joue un rôle déterminant. Celles-ci sont associées à une stratégie originale intégrant la conception assistée par ordinateur pour décrire les entités géométriques et surfaciques, et à la métrologie afin de vérifier les critères dimensionnelles. A partir des prescriptions initiales du concepteur, la confrontation des résultats numériques et des relevés expérimentaux pour quatre volumes formes par Press-bend et Blow-bend permettent la validation des paramètres process utilisés. Finalement, une méthode inverse est mise en œuvre afin d'optimiser, dans un premier temps, la carte de températures dans le volume avant formage puis, la topologie des outils de mise en forme.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Float glass forming process"

1

Office, Energy Efficiency. Improved process control on a glass container forming machine. London: Department of the Environment, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rajput, Sushil Kumar. Modelling of glass container forming process. Bradford, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Float glass forming process"

1

Dalstra, Joop. "Application of IR-Sensors in Container Glass Forming Process." In 65th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 26, Number 1, 11–24. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470291214.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hessenkemper, H. "Mechanical Strength Increase During the Forming Process of Glass." In Ceramic Transactions Series, 257–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118405949.ch24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muijsenberg, Erik. "Process Optimization of the Glass Froming Process by Advanced 3D Forming Models." In 70th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 31, Issue 1, 21–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470769843.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fabien, Béchet, Siedow Norbert, and Lochegnies Dominique. "Two-Dimensional Modeling of the Entire Glass Sheet Forming Process, Including Radiative Effects." In 74th Conference on Glass Problems, 147–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118932964.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

den Camp, Olaf Op, Dries Hegen, Gerard Haagh, and Maurice Limpens. "TV Panel Production: Simulation of the Forming Process." In 63rd Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 24, Issue 1, 1–19. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470294772.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Petereit, Janko, and Thomas Bernard. "Real-Time Nonlinear Model Predictive Control of a Glass Forming Process Using a Finite Element Model." In IFIP Advances in Information and Communication Technology, 266–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36062-6_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Na, Young Sang, S. G. Kang, K. Y. Park, and Jong Hoon Lee. "Estimation of Micro-Formability and FEM Simulation of Micro-Forming Process of a Zr-Based Bulk Metallic Glass." In THERMEC 2006, 2129–34. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.2129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

IGA, Motoichi, and Hiroshi MASE. "NUMERICAL SIMULATION OF FLOAT GLASS FORMING PROCESS." In Computer Aided Innovation of New Materials, 577–79. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-88864-8.50125-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thomas, Brychan Celfyn, and Alun Merlyn Thomas. "Case study - management of the early float glass start-ups." In The Business of New Process Diffusion, 27–44. Routledge, 2019. http://dx.doi.org/10.4324/9780429504105-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Layton, Christopher. "Pilkingtons and the Float-Glass Process: First of the Few." In Ten Innovations, 80–93. Routledge, 2018. http://dx.doi.org/10.4324/9781351066822-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Float glass forming process"

1

Shi, Yinghui, and John C. Petrykowski. "Normal-Mode and Lumped Mass Assessment of Acoustic Degassing of Liquid Metals in an Inductively Heated Cylindrical Furnace." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65531.

Full text
Abstract:
In a number of aerospace materials processing applications, including float zone refining of electronic materials, forming of metallic glasses and induction melting of light alloys, time-dependent electromagnetic forces associated with the processing are found to influence surface shape, nucleation of precipitates, evolution of crystal nucleation sites, segregation of alloy components, grain refinement and degassing. For this last action, which finds its prime occurrence in specially designed induction furnaces, the scale up from test stand to prototype is especially sensitive to a detuning that can occur when a common set point is sought for optimizing the concomitant electrical and mechanical performance of the system. This paper outlines a continuum based model that can be used to identify a favorable set of operating conditions so that an effective and efficient, electromagnetically-induced vibrational degassing operation can proceed within the furnace. The optimization metric utilizes a coupled magnetoacoustic system of governing equations, which is subsequently solved to obtain the dynamic response of a molten metallic to an eddy current-type excitation. The solutions display both a transient and steady state response, as well as eigenmode and eigenfrequency characteristics which capture both the spectral signatures of the furnace as well as the optimum operating conditions for degassing. The solutions are obtained with the aid of higher transcendental functions of Bessel type, generated within a MATLAB environment. A set of operating conditions is identified which would promote optimal degassing for light alloys in commercial size induction furnaces. The magnetic field model embedded in the solution is sufficiently general to allow for use in analyzing a DC field biasing method which has recently shown promise for use in grain refinement and metallic glass forming applications for which the characteristics of the vibrational field can be utilized to effectively diminish crystal nucleation.
APA, Harvard, Vancouver, ISO, and other styles
2

Vogel, Paul-Alexander, Anh Tuan Vu, Hendrik Mende, Tim Grunwald, Thomas Bergs, and Robert H. Schmitt. "Approaches and methodologies for process development of thin glass forming." In Optifab 2019, edited by Blair L. Unger and Jessica DeGroote Nelson. SPIE, 2019. http://dx.doi.org/10.1117/12.2536431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abdulhay, B., B. Bourouga, F. Alzetto, and C. Challita. "Experimental approach for thermal parameters estimation during glass forming process." In ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming. Author(s), 2016. http://dx.doi.org/10.1063/1.4963425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Angrilli, Francesco, Gianandrea Bianchini, Giulio Fanti, and Massimo Mozzi. "On-line measurements to control the forming process of glass vials." In Applications in Optical Science and Engineering, edited by Sabry F. El-Hakim. SPIE, 1993. http://dx.doi.org/10.1117/12.141377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mamedbeili, Izmir, Fahrettin Cakiroglu, Gokhan Bektas, Dadash Riza, and Fikret Hacizade. "Reflection, transmission and color measurement system for the online quality control of float glass coating process." In SPIE Optical Metrology 2013, edited by Peter H. Lehmann, Wolfgang Osten, and Armando Albertazzi. SPIE, 2013. http://dx.doi.org/10.1117/12.2020763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mros, Catherine, Kavic Rason, and Brad Kinsey. "Thin Film Superplastic Forming Model for Nanoscale Bulk Metallic Glass Forming." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68759.

Full text
Abstract:
Geometrically complex, high aspect ratio microstructures have been successfully formed in Bulk Metallic Glass (BMG) via superplastic forming against silicon dies [1–3]. Although nanoscale features have been created in a similar fashion, there exists a demand to develop these metallic nanofeatures into high aspect ratio nanostructures with controlled geometries. In past research a process model was created to predict the achievable nanoscale feature sizes and aspect ratios through a flow model [4]. The flow model assumes force equilibrium with a viscous term to account for the required force to produce flow and a capillary pressure term required to overcome surface effects which are significant at the nanoscale. In this paper, a thin film model to predict the pressure distribution across the BMG during the forming process when it is in the supercooled liquid state is presented. Silicon molds with various nanofeatures were produced using Deep Reactive Ion Etching to achieve high aspect ratio dies over a relatively large area in order to validate these models.
APA, Harvard, Vancouver, ISO, and other styles
7

Chang, Sung Ho, Young Min Lee, Tae Sung Jung, Jeong Jin Kang, Seok Kwan Hong, Gwang Ho Shin, and Young Moo Heo. "Simulation of an Aspheric Glass Lens Forming Behavior in Progressive GMP Process." In MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications; NUMIFORM '07; Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2007. http://dx.doi.org/10.1063/1.2740950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schorderet, Alain, Emmanuel Deghilage, and Kossi Agbeviade. "Effects of Process Parameters on Ultrasonic Micro-Hole Drilling in Glass and Ruby." In THE 14TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2011. AIP, 2011. http://dx.doi.org/10.1063/1.3589707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Giannopapa, C. G., and J. A. W. M. Groot. "A Computer Simulation Model for the Blow-Blow Forming Process of Glass Containers." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26408.

Full text
Abstract:
In glass container manufacturing (e.g. production of glass bottles and jars) an important process step is the blowing of the final product. This process is fast and is characterized by large deformations and the interaction of a hot glass fluid that gets into contact with a colder metal, the mould. The objective of this paper is to extend and further develop our finite element model [1] to be used for industrial purposes. To achieve this both steps of the forming of glass containers, namely blow-blow needs to be simulated and tested against real industrial problems. The model should be able to correctly represent the flow of glass, the energy exchange during the process and provide the final thickness of the final product. For tracking the geometry of the deforming inner and outer interface of glass, the level set technique is applied on a fixed mesh. At each time step the coupled problem of flow and energy exchange is solved by the model. Here the flow problem is only solved for the domain enclosed by the mould, whereas in the energy calculations, the mould domain is also taken into account. A non uniform temperature distribution is considered for the blowing of the preform. For all the calculations the material parameters (like viscosity) are based on the glass position, i.e. the position of the level sets. The velocity distribution, as found from this solution procedure, is then used to update the two level sets by means of solving a convection equation. A fast marching re-initialization algorithm is applied after each time step in order to let the level sets re-attain the property of being a signed distance function. The model is validated by several examples focusing on both the overall behavior (such as conservation of mass and energy) and the local behavior of the flow (such as glass-mould contact) and temperature distributions.
APA, Harvard, Vancouver, ISO, and other styles
10

Paluch, M. "The Importance of a Class of Secondary Relaxation Process in Glass-Forming Liquids." In FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography