Academic literature on the topic 'Float glass forming process'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Float glass forming process.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Float glass forming process"
Shou, Peng, Ren Hongcan, Cao Xin, and Yang Yong. "Continuous forming of ultrathin glass by float process." International Journal of Applied Glass Science 10, no. 3 (March 30, 2019): 275–86. http://dx.doi.org/10.1111/ijag.13132.
Full textFernández Oro, J. M., K. M. Argüelles Díaz, C. Santolaria Morros, A. F. Cobo Hedilla, and M. Lemaille. "Multiphase modelling of pouring glass over the spout lip of an industrial float in the flat glass forming process." International Journal for Numerical Methods in Fluids 58, no. 10 (December 10, 2008): 1147–77. http://dx.doi.org/10.1002/fld.1793.
Full textZhou, Tian Feng, Ji Wang Yan, and Tsunemoto Kuriyagawa. "Comparing Microgroove Array Forming with Micropyramid Array Forming in the Glass Molding Press." Key Engineering Materials 447-448 (September 2010): 361–65. http://dx.doi.org/10.4028/www.scientific.net/kem.447-448.361.
Full textZhou, H. M., G. D. Xi, and D. Q. Li. "Residual Thermal Stresses Simulation of Television Panel in the Forming Process. Part 1: Modelling." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220, no. 5 (May 1, 2006): 573–82. http://dx.doi.org/10.1243/09544062jmes141a.
Full textLee, J. H., and J. H. Vogel. "An Investigation of the Formability of Long Fiber Thermoplastic Composite Sheets." Journal of Engineering Materials and Technology 117, no. 1 (January 1, 1995): 127–32. http://dx.doi.org/10.1115/1.2804363.
Full textSachs, Ulrich, Sebastiaan P. Haanappel, Bert Rietman, Rene Ten Thije, and Remko Akkerman. "Formability of Fiber-Reinforced Thermoplastics in Hot Press Forming Process Based on Friction Properties." Key Engineering Materials 554-557 (June 2013): 501–6. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.501.
Full textZhang, Qin, Zejing Chen, and Zhixin Li. "Simulation of tin penetration in the float glass process (float glass tin penetration)." Applied Thermal Engineering 31, no. 6-7 (May 2011): 1272–78. http://dx.doi.org/10.1016/j.applthermaleng.2010.12.030.
Full textKozeruk, A. S., R. Orlandos Dias Gonsales, A. A. Sukhotski, and M. I. Marina I. Philonova. "Simulation of axicon processing area on technological equipment." Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, no. 3 (October 21, 2020): 365–74. http://dx.doi.org/10.29235/1561-8358-2020-65-3-365-374.
Full textKondrashov, V. I., E. V. Fainberg, and V. S. Bezlyudnaya. "Development of float process in sheet glass production." Glass and Ceramics 57, no. 5-6 (May 2000): 195–98. http://dx.doi.org/10.1007/bf02681276.
Full textLing, Shao Hua, Chang Yong Jing, and Xiao Liang Li. "Float Glass Production Line Cleaner Production Opportunities Analysis." Advanced Materials Research 726-731 (August 2013): 3180–84. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.3180.
Full textDissertations / Theses on the topic "Float glass forming process"
Pop, Serban Rares. "Modeling and simulation of the float glass process." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976517108.
Full textHajput, S. K. "Modelling of glass container forming process." Thesis, University of Bradford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376699.
Full textBusuladzic, Ines. "TWO-DIMENSIONAL HEAT TRANSFER AND THERMAL STRESS ANALYSIS IN THE FLOAT GLASS PROCESS." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1176767377.
Full textChen, Yang. "Thermal Forming Process for Precision Freeform Optical Mirrors and Micro Glass Optics." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1267477993.
Full textVan, Iseghem Mike. "Simulation of a glass forming process : application to the assembling of electron guns." ENSMP, 2000. http://www.theses.fr/2000ENMP0997.
Full textLa fabrication des canons éléctroniques consiste à indenter des grilles métalliques dans du verre préalablement chauffé. Le modèle numérique en 2d que nous proposons dans ce travail prend en compte les phénomènes thermo-mécaniques qui mènent à l'établissement d'un gradient de température dans le verre, son écoulement autour de la griffe métallique ainsi qu'au développement des contraintes résiduelles dans le verre et dans le métal. Pour le comportement visco-élastique du verre, une loi de Maxwell a été choisie. Le contact est géré par un algorithme de type maître/esclave, exprimé aux noeuds de l'interface verre/métal, tant pour le frottement mécanique que pour le transfert thermique. Les propriétes inconnues des matériaux et de l'interface sont d'abord étudiées dans des expériences de transfert thermique 1d et de photo-élasticimétrie sur un assemblage simplifié verre/métal. Ensuite, celles-ci, ainsi que les conditions aux limites inconnues du procédé, ont été identifiées par analyses inverses avec des mesures expérimentales sur la ligne pilote. Les contraintes résiduelles prévues par notre modèle et leur sensibilité aux paramètres nous a permis de décrire les mécanismes d'ancrage. L'importance des cycles thermiques, du choix du métal et de la géometrie des griffes sont mis en évidence. Cela nous permet de proposer des améliorations technologiques du procédé de fabrication et de la qualité de l'ancrage des canons a électrons
Ansbergs, Christa R. 1976. "Optimization of the glass fiber forming process for single-tip and small-number-tip positions." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/41028.
Full textIncludes bibliographical references (p. 93).
The design of fiberglass manufacturing setups has evolved largely by trial and error. Efforts are now in place to achieve a better understanding of the fiber forming process. To facilitate this research, a smaller and simpler version of the full-scale fiber forming process is being used. This system has vastly different geometry and produces a small number of fibers. Work in this project has concerned optimization of the small-scale process to more closely match the behavior to production line fiberglass forming positions, such that results of experiments on the smaller system are applicable to the full scale system. Efforts were also put into simplification of the system, such that process variables can more easily be isolated for further study. The primary effort of this project was put into controlling glass head pressure. On the full-scale system constant glass depth is maintained and the glass weight controls the flow rate of glass through the fiber forming tips. On the small system flow rate is controlled by a combination of changing glass weight and added air pressure. The pressure control system developed in this project uses glass resistance to measure glass depth and outputs a signal to a solenoid valve to add the appropriate amount of air pressure above the glass. The glass resistance measuring system had to be calibrated for a range of temperatures. Resistance data was collected while mass flow of glass was monitored. From the mass flow glass depth was calculated to an accuracy of 3%. When set to simulate the full-scale fiberglass forming operation the pressure control valve can control pressure to within 4.5% of 5.5 kPa required pressure. A new fiber winding system was designed and implemented. This system assures even distribution of fibers along the axis of a winder drum, speed control to within 1%, and limited vibration transmission to the fibers while they are in the forming and cooling regions. The pressure control and winder control systems were incorporated into the same LabView interface to assure ease of use. From the interface an operator can set winder speed and total head pressure and monitor the control of both to assure that the system is behaving appropriately.
by Christa R. Ansbergs.
S.M.and S.B.
Bricknell, David John. "Elusive decisions : a case study of intuitive strategic decision making in the exploitation of the Pilkington float glass process, 1952-1987." Thesis, Manchester Metropolitan University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436795.
Full textBiosca, Mecías Adrià. "Numerical and Experimental Study of Glass in the Blow and Blow Forming Process for the Prediction of Thickness Distributions in Glass Perfume Containers." Doctoral thesis, Universitat Ramon Llull, 2020. http://hdl.handle.net/10803/668793.
Full textEl diseño del molde preparador es un punto crítico en el desarrollo de nuevos frascos ya que define la distribución de espesores de vidrio en las botellas fabricadas. Todo y eso, el diseño de estas cavidades aún se basa en el conocimiento empírico y la metodología de ensayo y error. Por estas razones, pueden ser necesarias varias pruebas de fabricación, las cuales implican tiempo no productivo y alargan el tiempo de desarrollo. Ramon Clemente es un fabricante de frascos de vidrio que quiere reducir el vacio actual entre la experiencia de los vidrieros y el conocimiento científico de las simulaciones numéricas. El objetivo es implementar un modelo que describa numéricamente el comportamiento termo-mecánico del vidrio en el proceso de fabricación por soplado-soplado para predecir la distribución de grosores en los frascos. Así pues, esta tesis se centra en un estudio numérico y experimental de la producción de botellas de vidrio. Usando una cámara termográfica se realizaron análisis térmicos bajo condiciones reales de fabricación. Éstas incluyeron medidas experimentales de la gota de vidrio, parison y frascos acabados durante el proceso productivo. Además, las operaciones de conformado y las propiedades del vidrio definieron un marco teórico para modelar numéricamente el proceso de soplado-soplado con ANSYS Polyflow. Posteriormente, se implementaron dos modelos numéricos. Primero, un ensayo de caída de la gota proporcionó una descripción del flujo de vidrio a lo largo del tiempo para validar la caracterización de la viscosidad y el flujo no isotérmico y newtoniano previsto por las simulaciones. Después, un modelo numérico del proceso de soplado-soplado para predecir el reparto de espesores de vidrio en los envases fabricados. Los resultados numéricos se correlacionaron con temperaturas experimentales del vidrio y con los grosores de los frascos cortados. Los resultados obtenidos permiten tener una mejor comprensión del comportamiento termo-mecánico del vidrio dentro de las cavidades de los moldes. Además, las simulaciones predijeron correctamente la distribución de espesores al final del proceso, en función del diseño del molde preparador y de las condiciones de fabricación, tanto en el modelo axisimétrico cómo tridimensional. La validación del modelo numérico en tres dimensiones es muy importante para Ramon Clemente, ya que abre las puertas a predecir numéricamente los grosores de los frascos con geometrías complejas en lugar de limitarse a botellas axisimétricas. Por lo tanto, permitiendo desarrollar nuevos frascos de vidrio para el sector de la perfumería de forma más rápida y de mejor calidad.
The design of the blank mold cavity is a critical step in the development of new perfume containers as it defines the glass thickness distribution of the manufactured bottles. Despite that, mold cavity design is still based on empirical knowledge and trial and error. Hence, several manufacturing tests may be required, which increase time to market and involve significant downtimes. Ramon Clemente is a glass manufacturing company that wants to bridge the gap between industrial experience in glassmaking and scientific and engineering knowledge present in numerical simulations. The goal is to implement a numerical model to describe the thermo-mechanical behavior of glass during the blow and blow forming process and predict the glass thickness distribution of the manufactured bottles. Therefore, this thesis focuses on a numerical and experimental study of the production of glass perfume containers. Then, thermal analyses were performed using an infrared thermal camera under industrial manufacturing conditions. These included experimental measurements of the glass gob, parison and final container throughout the forming process. In addition, forming operations and glass properties defined a framework to numerically model the blow and blow forming process using ANSYS Polyflow. Subsequently, two numerical models were implemented. First, a gob drop test to provide a description of the glass flow over time to validate the characterized viscosity and the Newtonian non-isothermal flow predicted by the simulations. Later, a numerical model of the blow and blow forming process to predict the glass thickness distribution of the manufactured containers. Numerical results were correlated with experimental glass temperatures and thickness distributions of sectioned containers. Results lead to gain a better understanding of the thermo-mechanical behavior of glass inside the mold cavities. Moreover, simulations successfully predicted the thickness distribution after the container forming process, showing the influence of the blank mold cavity and process conditions in both axisymmetric and three-dimensional models. Validation of the 3D model has strong implications for Ramon Clemente, as it paves the way for numerically predicting the glass thicknesses of complex perfume containers instead of being limited to axisymmetric bottles. Therefore, allowing to develop new glass containers faster and of better quality.
Steinbock, L. J., S. Krishnan, R. D. Bulushev, S. Borgeaud, M. Blokesch, L. Feletti, and A. Radenovic. "Probing the size of proteins with glass nanopores." Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36309.
Full textFrançois, Emmanuel. "Modèles éléments finis du formage du verre par procédés Press-bend et Blow-bend : Optimisation des paramètres process par méthode inverse." Valenciennes, 1997. https://ged.uphf.fr/nuxeo/site/esupversions/0caa37a3-30f2-4654-b2ac-dde557896c18.
Full textBooks on the topic "Float glass forming process"
Office, Energy Efficiency. Improved process control on a glass container forming machine. London: Department of the Environment, 1994.
Find full textRajput, Sushil Kumar. Modelling of glass container forming process. Bradford, 1987.
Find full textBook chapters on the topic "Float glass forming process"
Dalstra, Joop. "Application of IR-Sensors in Container Glass Forming Process." In 65th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 26, Number 1, 11–24. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470291214.ch2.
Full textHessenkemper, H. "Mechanical Strength Increase During the Forming Process of Glass." In Ceramic Transactions Series, 257–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118405949.ch24.
Full textMuijsenberg, Erik. "Process Optimization of the Glass Froming Process by Advanced 3D Forming Models." In 70th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 31, Issue 1, 21–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470769843.ch3.
Full textFabien, Béchet, Siedow Norbert, and Lochegnies Dominique. "Two-Dimensional Modeling of the Entire Glass Sheet Forming Process, Including Radiative Effects." In 74th Conference on Glass Problems, 147–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118932964.ch15.
Full textden Camp, Olaf Op, Dries Hegen, Gerard Haagh, and Maurice Limpens. "TV Panel Production: Simulation of the Forming Process." In 63rd Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 24, Issue 1, 1–19. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470294772.ch1.
Full textPetereit, Janko, and Thomas Bernard. "Real-Time Nonlinear Model Predictive Control of a Glass Forming Process Using a Finite Element Model." In IFIP Advances in Information and Communication Technology, 266–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36062-6_27.
Full textNa, Young Sang, S. G. Kang, K. Y. Park, and Jong Hoon Lee. "Estimation of Micro-Formability and FEM Simulation of Micro-Forming Process of a Zr-Based Bulk Metallic Glass." In THERMEC 2006, 2129–34. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.2129.
Full textIGA, Motoichi, and Hiroshi MASE. "NUMERICAL SIMULATION OF FLOAT GLASS FORMING PROCESS." In Computer Aided Innovation of New Materials, 577–79. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-88864-8.50125-4.
Full textThomas, Brychan Celfyn, and Alun Merlyn Thomas. "Case study - management of the early float glass start-ups." In The Business of New Process Diffusion, 27–44. Routledge, 2019. http://dx.doi.org/10.4324/9780429504105-3.
Full textLayton, Christopher. "Pilkingtons and the Float-Glass Process: First of the Few." In Ten Innovations, 80–93. Routledge, 2018. http://dx.doi.org/10.4324/9781351066822-6.
Full textConference papers on the topic "Float glass forming process"
Shi, Yinghui, and John C. Petrykowski. "Normal-Mode and Lumped Mass Assessment of Acoustic Degassing of Liquid Metals in an Inductively Heated Cylindrical Furnace." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65531.
Full textVogel, Paul-Alexander, Anh Tuan Vu, Hendrik Mende, Tim Grunwald, Thomas Bergs, and Robert H. Schmitt. "Approaches and methodologies for process development of thin glass forming." In Optifab 2019, edited by Blair L. Unger and Jessica DeGroote Nelson. SPIE, 2019. http://dx.doi.org/10.1117/12.2536431.
Full textAbdulhay, B., B. Bourouga, F. Alzetto, and C. Challita. "Experimental approach for thermal parameters estimation during glass forming process." In ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming. Author(s), 2016. http://dx.doi.org/10.1063/1.4963425.
Full textAngrilli, Francesco, Gianandrea Bianchini, Giulio Fanti, and Massimo Mozzi. "On-line measurements to control the forming process of glass vials." In Applications in Optical Science and Engineering, edited by Sabry F. El-Hakim. SPIE, 1993. http://dx.doi.org/10.1117/12.141377.
Full textMamedbeili, Izmir, Fahrettin Cakiroglu, Gokhan Bektas, Dadash Riza, and Fikret Hacizade. "Reflection, transmission and color measurement system for the online quality control of float glass coating process." In SPIE Optical Metrology 2013, edited by Peter H. Lehmann, Wolfgang Osten, and Armando Albertazzi. SPIE, 2013. http://dx.doi.org/10.1117/12.2020763.
Full textMros, Catherine, Kavic Rason, and Brad Kinsey. "Thin Film Superplastic Forming Model for Nanoscale Bulk Metallic Glass Forming." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68759.
Full textChang, Sung Ho, Young Min Lee, Tae Sung Jung, Jeong Jin Kang, Seok Kwan Hong, Gwang Ho Shin, and Young Moo Heo. "Simulation of an Aspheric Glass Lens Forming Behavior in Progressive GMP Process." In MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications; NUMIFORM '07; Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2007. http://dx.doi.org/10.1063/1.2740950.
Full textSchorderet, Alain, Emmanuel Deghilage, and Kossi Agbeviade. "Effects of Process Parameters on Ultrasonic Micro-Hole Drilling in Glass and Ruby." In THE 14TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2011. AIP, 2011. http://dx.doi.org/10.1063/1.3589707.
Full textGiannopapa, C. G., and J. A. W. M. Groot. "A Computer Simulation Model for the Blow-Blow Forming Process of Glass Containers." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26408.
Full textPaluch, M. "The Importance of a Class of Secondary Relaxation Process in Glass-Forming Liquids." In FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204471.
Full text