Academic literature on the topic 'Floating microballoons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Floating microballoons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Floating microballoons"

1

Srivastava, Ankita, Ruchi Shukla, Kusum Sharma, Hitesh Jain, and D. B. Meshram. "Microballoons: A Gastro Retentive Drug Delivery System." Journal of Drug Delivery and Therapeutics 9, no. 4-s (2019): 625–30. http://dx.doi.org/10.22270/jddt.v9i4-s.3274.

Full text
Abstract:
Oral route is most preferable and widely used route for the administration of drug. Microballoons becomes novel technology in pharmaceutical field in the floating drug delivery for achieving the gastric retention. Microballoons are also called as hollowspheres which are porous smooth in nature and thus show good floating properties in gastric fluid. Microballoons release the drug in controlled manner at the targeted site. Microballoons are spherical empty vesicles without core and that can remain buoyant in gastric region for prolong period of time without irritation in gastrointestinal tract. Multiparticulate particles having a low density system that can efficiently prolong the gastric retention time of the drugs, thus enhanced bioavailability and thus improve the dosing frequency. These are less soluble at higher pH environment. As microballoons delivery systems provide longer retention in gastric pH and enhance the solubility of drugs that are less soluble in high pH environment. The formation of cavity inside the microballoons depend on the preparation, temperature and the surface smoothness determine the floatability and the release rate of microballoons.
 Keywords: Microballoons, Gastro retentive drug delivery system, Hollowspheres, Controlled release
APA, Harvard, Vancouver, ISO, and other styles
2

Manivannan, Subramanian, Akshay M, Bhuvaneswari S, and Nify F. "FORMULATION AND EVALUATION OF GASTRORETENTIVE MICROBALLOONS OF ACEBROPHYLLINE FOR THE TREATMENT OF BRONCHIAL ASTHMA." Asian Journal of Pharmaceutical and Clinical Research 9, no. 5 (2016): 105. http://dx.doi.org/10.22159/ajpcr.2016.v9i5.12603.

Full text
Abstract:
ABSTRACTObjective: Gastroretentive dosage forms are an approach for prolonged and predictable drug delivery in the upper gastrointestinal tract to controlthe gastric residence time. Microballoons are considered as one of the most promising buoyant drug delivery systems as they possess the advantagesof both multiple-unit systems and good floating properties. Acebrophylline is a xanthine derivative with potent bronchodilator, mucosecretolytic, andanti-inflammatory property. It is used to treat bronchial asthma and chronic obstructive pulmonary diseases.Methods: Microballoons of acebrophylline were prepared by emulsion solvent diffusion method using hydroxypropyl methylcellulose (HPMC) andethyl cellulose (EC) as polymer. The microballoons were evaluated with their micromeritic properties, particle size, tapped density, compressibilityindex, angle of repose, percentage yield, in vitro buoyancy, entrapment efficiency, drug-polymer compatibility, scanning electron microscopy (SEM),and drug release kinetics.Results: The mean particle size of the microballoons formulation MB1 to MB6 containing HPMC and EC was in the range between 226±16 and 577±10,respectively. The mean particle size of microballoons was found to increase with increasing polymer concentration. The micromeritic properties werefound be good, and SEM confirmed their hollow structure with smooth and dense which helped to prolong floating to increase residence time instomach. The in vitro drug release studies showed controlled release of acebrophylline microballoons in the simulated gastric fluid more than 12 hrs.Conclusions: The results showed that the prepared floating microballoons of acebrophylline prove to be potential multiple-unit delivery devicesadaptable for safe and effective sustained drug delivery.Keywords: Microballoons, Acebrophylline, Bronchial asthma, Hydroxypropyl methylcellulose, Ethyl cellulose.
APA, Harvard, Vancouver, ISO, and other styles
3

R. Lankapalli, Sasidhar, Vidyadhara Suryadevara, Sowjanya L. Battula, and Ramu Anne. "DEVELOPMENT AND EVALUATION OF CAPTOPRIL CONTROLLED RELEASE FLOATING MICROBALLOONS." Indian Drugs 59, no. 08 (2022): 31–38. http://dx.doi.org/10.53879/id.59.08.11130.

Full text
Abstract:
The objective of the present study was to develop floating microballoons of captopril in order to achieve an extended gastric retention in the upper GIT which may enhance the absorption and improve bioavailability. The floating microballoons were formulated with calcium silicate as porous carrier, Eudragit L100 and ethyl cellulose 7 cps as coating polymers and captopril as model drug. The prepared microballoons were evaluated for particle size, angle of repose, Carr’s index, buoyancy studies, drug content and for in vitro drug release. Based upon the dissolution data obtained and various physical parameters evaluated, formulation containing drug to polymer ratio at 1:9 was optimised and further trials were carried out by changing the parameters like temperature, rpm and surfactant concentration to obtain more uniform and stable microballoons. In the optimized formulation, the drug release form was at a steady state manner when compared to the other formulations. The floating drug delivery system of captopril is a promising alternative way of achieving prolonged release with potential for achieving enhanced absorption and bioavailability.
APA, Harvard, Vancouver, ISO, and other styles
4

Gurpreet, Kaur* Ashita Pawaiya Damandeep Kaur Rajat Kumar Sharma. "Microballoons- Novel Approach in Floating Drug Delivery System." International Journal of Pharmaceutical Sciences 2, no. 12 (2024): 2293–309. https://doi.org/10.5281/zenodo.14501085.

Full text
Abstract:
Recent developments in floating delivery systems for pharmaceuticals (FDDS), which included the uniform dispersion of multiparticulate dose forms along the GIT, led to the development of gastro-retentive floating microspheres. This may result in less chance of local discomfort and more reliable drug absorption. As a dose form with remarkable buoyancy in the stomach, microballoons (MB), a multi-unit prolonged release with a sphere-shaped hollow wrapped in a strong polymer shell, have been developed. Because stomach acid has a lower relative density than this preparation for limited intestinal absorption, it is designed to float on top of it.The emulsion solvent diffusion method and enteric acrylic polymers are used to create and fill microballoons with drugs in their outer polymer casings. For medications with site-specific absorption, microballoons drug delivery systems have proven to be more significant in regulating release rate. As a viable strategy for stomach retention, the floating microballoons demonstrated gastroretentive controlled release distribution with effective ways to increase the bioavailability. By reducing the frequency of dosages, floating microspheres can increase patient compliance and improve the therapeutic efficacy of medications with short half-lives. Improved absorption of medications that only dissolves in the stomach; buoyancy lengthens the duration that food is retained in the stomach. Solvent diffusion is used to create floating microspheres. Optimized hollow microspheres will play a key role in innovative drug administration, especially in safe, efficient, and targeted in vivo distribution, which holds promise as a possible strategy for gastric retention.
APA, Harvard, Vancouver, ISO, and other styles
5

Malik, Prashant, Upendra Nagaich, Raj Kaur Malik, and Neha Gulati. "Pentoxifylline Loaded Floating Microballoons: Design, Development and Characterization." Journal of Pharmaceutics 2013 (May 9, 2013): 1–5. http://dx.doi.org/10.1155/2013/107291.

Full text
Abstract:
The floating microballoons have been utilized to obtain prolonged and uniform release in the stomach. The objective of the present study involves design, development, and characterization of pentoxifylline loaded floating microballoons to prolong their gastric residence time. Pentoxifylline (trisubstituted xanthine derivative) loaded microballoons were prepared by the solvent evaporation technique using different concentrations of polymers like HPMC K4M and ethyl cellulose (EC) in ethyl alcohol and dichloromethane organic solvent system. Microballoons were characterized for their particle size, surface morphology, production yield, loading efficiency, buoyancy percentage, and in vitro drug release studies. From the characterization it was observed that increases in amount of polymers (HPMC K4M and EC) led to increased particle size, loading efficiency, and buoyancy percentage, and retarded drug release. The particle size, particle yield, loading efficiency, buoyancy percentage and in vitro drug release for optimized formulation (F3) were found to be 104.0±2.87 µm, 80.89±2.24%, 77.85±0.61%, 77.52±2.04%, and 82.21±1.29%, respectively. The data was fitted to different kinetic models to illustrate its anomalous (non-Fickian) diffusion. The in vitro result showed that formulations comprised of varying concentrations of ethyl cellulose in higher proportion exhibited much retarded drug release as compared to formulations comprised of higher proportion of varying concentrations of HPMC K4M.
APA, Harvard, Vancouver, ISO, and other styles
6

Negia, Rakhi, Laxmi Goswamia, and Preeti Kothiyal. "Microballoons: A better approach for gastro retention." Indian Journal of Pharmaceutical and Biological Research 2, no. 02 (2014): 100–107. http://dx.doi.org/10.30750/ijpbr.2.2.17.

Full text
Abstract:
The purpose of this review is to accumulate the recent study on floating drug delivery system with special emphasis on microballoons as drug delivery. Microballoons are emerging as the most promising drug delivery as it overcome many limitations of conventional drug delivery system. As microballoons delivery system provides longer retention in gastric pH, hence longer is the residence time and therefore enhance the solubility of drugs that are less soluble in high pH environment. The formation of cavity inside the microsphere depends upon the preparation temperature and the surface smoothness determines the floatability and the drug release rate of the microballoons. The review includes the classification, advantages, disadvantages, method of preparation and future aspects of microballoons. Basic anatomy and physiology of stomach is also studied.
APA, Harvard, Vancouver, ISO, and other styles
7

S., Supriya, and M. Swetha* Dr. "A REVIEW ON MICROBALLOONS." World Journal of Pharmaceutical Science and Research 2, no. 4 (2023): 21–24. https://doi.org/10.5281/zenodo.10897607.

Full text
Abstract:
Microballoons also known as hollow sphere drug delivery systems. These are typically spherical in size from 200 microns and do not have a core. They have a gastric retention drug delivery system (GRDDS), which can improve drug bioavailability and reduce stomach irritation. These floating microballoons have the convenience that they stay buoyant and circulate uniformly over the gastric ingredients to withhold the variations of gastric emptying and release the drug for extended period of time. It’s floating containing synthetic polymers that improves the processing of solid dosage forms such as tablets, capsules and powders. Due to the presence of hollow space inside the microballoons, these improve gastric drug therapy and gastric mucosal concentration which helps reduce drug residence time in the stomach. It is less soluble at higher pH. The formulation of these Microballoons depends on temperature, preparation and surface smoothness to increase the buoyancy of a good propellant as it uses a multiple unit system. It helps to treat peptic ulcers, chronic stomach problems and Rheumatoid arthritis.
APA, Harvard, Vancouver, ISO, and other styles
8

Penjuri, S. C. B., R. Nagaraju, S. Shaik, S. Damineni, and S. R. Poreddy. "GASTRORETENTIVE MICROBALLOONS OF RIBOFLAVIN: FORMULATION AND EVALUATION." INDIAN DRUGS 54, no. 04 (2017): 47–52. http://dx.doi.org/10.53879/id.54.04.10708.

Full text
Abstract:
Gastroretentive dosage forms are useful to extend release of drugs having a narrow window of absorption in the upper intestine and for drugs degraded by higher pH or for drugs with local action in the proximal part of the GI tract. In the present study, an attempt was made to prepare microballoons of riboflavin by emulsion solvent diffusion method by using HPMC and ethylcellulose in order to extend the drug release in the upper GIT, which may result in enhanced absorption and thereby improved bioavailability. The size and surface morphology of riboflavin microballoons were characterized by optical and scanning electron microscopy. FTIR and DSC studies revealed no drug excipient interaction. Average particle size of microballoons was found to be between 126.8±2.26 to 163.4±2.52 μm. Microballoons were found to be spherical in shape with smooth surface texture. Percentage yield of the microballoons was satisfactory. In vitro buoyancy of the optimized riboflavin microballoons was found to be 96.24±0.08%, indicating good floating in stomach. Cumulative amount of drug release from microballoons at the end of 12 hr was 99.78±2.78 % and followed Highuchi diffusion kinetics and super case II transport.
APA, Harvard, Vancouver, ISO, and other styles
9

Pandey, Chandra Prakash, and ,. Archana. "Development and Evaluation of Gastro Retentive Mucoadhesive Microballoons of Esomeprazole to Treat Peptic Ulcer." Journal of Drug Delivery and Therapeutics 12, no. 4-S (2022): 128–39. http://dx.doi.org/10.22270/jddt.v12i4-s.5552.

Full text
Abstract:
The Gastro-retentive medication delivery method may increase patient compliance by lowering drug plasma level fluctuations1. The absorption maxima (max) of esomeprazole magnesium in 0.1 N HCl solution were found to be at 291 nm. Correlation coefficient values better than 0.99 suggest that the calibration curves provide strong linearity data. The results showed that the medication was soluble in 0.1 N HCl and had the maximum solubility in water. Magnesium esomeprazole was found to have a partition coefficient of (0.2442). The prepared mucoadhesive microballons percentage yield was calculated, with a range of 88.2 to 96.5 percent. The shape and surface morphology of produced mucoadhesive microballons photographed using a scanning electron microscope. The effectiveness of drug entrapment was in the region of 81.71 % - 93.51 % . The swelling rate and percent mucoadhesion of Esomeprazole Magnesium mucoadhesive microballons ranged from 75.63 percent to 88.64 percent. The in-vitro buoyancy % of mucoadhesive microballons used to determine the floating ability of all formulations. All of the developed formulations were floated for at least 7 to 12 hours. The best formulations incorporate naturally occurring polysaccharide polymeric blends as Drug: HPMC: Carbopol 934 (1:1:1) that release more than 98.13 percent of the drug in a regulated and sustained manner in the stomach environment for up to 24 hours.
 Keywords: Gastroretention, mucoadhesive microballoons, Esomeprazole, HPMC, Carbopol
APA, Harvard, Vancouver, ISO, and other styles
10

Hajare, Pranit P., and Punit R. Rachh. "FORMULATION AND DEVELOPMENT OF NOVEL GASTRORETENTIVE MICROBALLOONS OF REPAGLINIDE." Journal of Advanced Scientific Research 12, no. 04 Suppl 1 (2021): 193–204. http://dx.doi.org/10.55218/jasr.s1202112421.

Full text
Abstract:
The present study involves preparation and evaluation of Microballoons of Repaglinide which is having poor solubility in water and low oral bioavailability. Repaglinide, an oral hypoglycemic agent, is rapidly absorbed and eliminated from the body after oral administration. The peak plasma level occurs within an hour of oral administration with elimination half life of 1 hr. The objective of the present work is to prepare floating microballoons of Repaglinide for delivering the drug in controlled manner which will help to reduce dosing frequency and maintain the plasma concentration of drug for longer time without fluctuations. This will be helpful in having better control over clinical maintenance of the type 2 diabetic condition. The Microballoons were prepared by solvent evaporation emulsification technique using Sodium Alginate as coating agent and Calcium Chloride as cross-linking agent. The formation of spherical and hollow Microballoons was confirmed by SEM studies ranging from 220 to 310 μm. The percentage of drug entrapment was found to be 70-80%. The Micromeritic properties indicated better flowability of the spheres. The Buoyancy test showed good floatability for more than 12 hrs. Formulation B5, C5 and D3 showed higher buoyant percentage after 12 hours and percentage yield. Microballoons of Repaglinide were designed to increase the Solubility, Bioavliability and to improve the patient compliance. The microballoons with the smaller particle size enhanced the in vitro drug release of the Repaglinide. Thus, microballoons approach may be a promising carrier for Repaglinide and other BCS class II drugs.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!