Academic literature on the topic 'Floral meristem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Floral meristem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Floral meristem"
Laudencia-Chingcuanco, Debbie, and Sarah Hake. "The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence." Development 129, no. 11 (June 1, 2002): 2629–38. http://dx.doi.org/10.1242/dev.129.11.2629.
Full textKong, Doudou, and Annette Becker. "Then There Were Plenty-Ring Meristems Giving Rise to Many Stamen Whorls." Plants 10, no. 6 (June 3, 2021): 1140. http://dx.doi.org/10.3390/plants10061140.
Full textFletcher, J. C. "The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis." Development 128, no. 8 (April 15, 2001): 1323–33. http://dx.doi.org/10.1242/dev.128.8.1323.
Full textSouer, E., A. van der Krol, D. Kloos, C. Spelt, M. Bliek, J. Mol, and R. Koes. "Genetic control of branching pattern and floral identity during Petunia inflorescence development." Development 125, no. 4 (February 15, 1998): 733–42. http://dx.doi.org/10.1242/dev.125.4.733.
Full textGrbić, Vojislava. "Comparative analysis of axillary and floral meristem development." Canadian Journal of Botany 83, no. 4 (April 1, 2005): 343–49. http://dx.doi.org/10.1139/b05-017.
Full textThiel, J., R. Koppolu, C. Trautewig, C. Hertig, S. M. Kale, S. Erbe, M. Mascher, et al. "Transcriptional landscapes of floral meristems in barley." Science Advances 7, no. 18 (April 2021): eabf0832. http://dx.doi.org/10.1126/sciadv.abf0832.
Full textLoehrlein, Marietta, and Richard Craig. "Floral Ontogeny of Pelargonium ×domesticum." Journal of the American Society for Horticultural Science 125, no. 1 (January 2000): 36–40. http://dx.doi.org/10.21273/jashs.125.1.36.
Full textWei, Wei, Robert E. Davis, Gary R. Bauchan, and Yan Zhao. "New Symptoms Identified in Phytoplasma-Infected Plants Reveal Extra Stages of Pathogen-Induced Meristem Fate-Derailment." Molecular Plant-Microbe Interactions® 32, no. 10 (October 2019): 1314–23. http://dx.doi.org/10.1094/mpmi-01-19-0035-r.
Full textClark, S. E., M. P. Running, and E. M. Meyerowitz. "CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1." Development 121, no. 7 (July 1, 1995): 2057–67. http://dx.doi.org/10.1242/dev.121.7.2057.
Full textLaux, T., K. F. Mayer, J. Berger, and G. Jurgens. "The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis." Development 122, no. 1 (January 1, 1996): 87–96. http://dx.doi.org/10.1242/dev.122.1.87.
Full textDissertations / Theses on the topic "Floral meristem"
Filho, José Hernandes Lopes. "Ontogênese do complexo de gemas em Passiflora L. (Passifloraceae) e expressão de PasAP1, ortólogo de APETALA1." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-17072015-084101/.
Full textThe leaf axil in Passiflora L. (Passifloraceae) bears a complex structure: a tendril and one or more flowers seem to arise from the same growing point. In addition, vegetative bud is also present. There are many different interpretations for the origin of the tendril in this group, ranging from modifications of flowers to side shoots. Also, the ontogeny of these structures is often understood as a single meristem which subdivides into a bud complex, comprising the tendril and flower meristems. Recently, the expression of the LEAFY ortholog was demonstrated in the axillary, tendril and floral meristems of two Passiflora species. In Arabidopsis and many angiosperms, this gene is responsible for the shift between vegetative and reproductive phase. Therefore, the present work aimed to describe, in detail, the ontogeny of the bud complex in Passiflora species belonging to different subgenera, including different life stages. The expression of the ortholog of APETALA1, a gene typically related to floral meristem identity and sepal/petal specification was also assessed. As results, we propose a different interpretation for the ontogeny of the bud complex, based on the production of bracts and their associated meristems by the original axillary meristem, which then turns into the tendril meristem. We also demonstrate that expression of AP1 is much broader than that of the Arabidopsis model, and possibly have many other functions related to cell indeterminacy.
Chiurugwi, Tinashe. "Molecular studies of floral meristem reversion and determinacy in Impatiens balsamina L." Thesis, University of Reading, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428291.
Full textGrandi, V. "FUNCTIONAL ANALYSIS OF TRANSCRIPTION FACTORS INVOLVED IN REPRODUCTIVE MERISTEM IDENTITY IN ARABIDOPSIS THALIANA." Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/150562.
Full textChu, Yi-Hsuan. "The role of LC and FAS in regulating floral meristem and fruit locule number in tomato." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1512046877370248.
Full textRodas, Méndez Ana Lucía. "MtSUPERMAN controls the number of flowers per inflorescence and floral organs in the inner three whorls of Medicago truncatula." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/171474.
Full text[CA] Les lleguminoses són un gran grup de plantes considerades de gran importància pel seu valor nutricional per a l'alimentació humana i ramadera. A més, les famílies de lleguminoses es caracteritzen per trets distintius de desenrotllament com la seua inflorescència composta i la seua complexa ontogènia floral. Per a comprendre millor estes característiques distintives, és important estudiar els gens reguladors clau involucrats en la inflorescència i el desenrotllament floral. El gen SUPERMAN (SUP) és un factor transcripcional de dits de zinc (Cys2-Hys2) considerat com un repressor actiu que controla el nombre d'estams i carpels en A. thaliana. A més, SUP està involucrat en la terminació del meristemo floral i el desenrotllament dels teixits derivats del carpel. "L'objectiu principal d'este treball va ser la caracterització funcional de l'ortòleg de SUP en la lleguminosa model Medicago truncatula (MtSUP) . Aconseguim l'objectiu amb base en un enfocament genètic invers, anàlisi d'expressió gènica i assajos de complementació i sobreexpressió. Els nostres resultats mostren que MtSUP és el gen ortòleg de SUP en M. truncatula. MtSUP compartix alguns dels rols ja descrits per a SUP amb variacions. Curiosament, MtSUP està involucrat en la determinació del meristemo de la inflorescència secundària (I2) i els primordios comuns (CP). Per tant, MtSUP controla el nombre de flors i pètals-estams que produïxen el meristemo I2 i els primordios comuns, respectivament. MtSUP mostra funcions noves per a un gen tipus SUP, exercint papers clau en els meristemos que conferixen complexitat de desenrotllament a esta família d'angiospermes. "Este treball va permetre identificar a MtSUP, un gen clau que forma part de la xarxa reguladora genètica darrere de la inflorescència composta i el desenrotllament de flors en la lleguminosa model M. truncatula.
[EN] Legumes are a large group of plants considered of great importance for their nutritional value in human and livestock nutrition. Besides, legume families are characterized by distinctive developmental traits as their compound inflorescence and complex floral ontogeny. For a better understanding of these distinctive features is important to study key regulatory genes involved in the inflorescence and floral development. The SUPERMAN (SUP) gene is a zinc-finger (Cys2-Hys2) transcriptional factor considered to be an active repressor that controls the number of stamens and carpels in A. thaliana. Moreover, SUP is involved in the floral meristem termination and the development of the carpel marginal derived tissues. The main objective of this work was the functional characterization of the SUP orthologue in the model legume Medicago truncatula (MtSUP). We achieved this objective based on a reverse genetic approach, gene expression analysis, and complementation and overexpression assays. Our results show that MtSUP is the orthologous gene of SUP in M. truncatula. MtSUP shares some of the roles already described for SUP with variations. Interestingly, MtSUP controls the determinacy of the secondary inflorescence (I2) meristem and the common primordia (CP). Thus, MtSUP controls the number of flowers and petal-stamens produced by the I2 meristem and the common primordia respectively. MtSUP displays novel functions for a SUP-like gene, playing key roles in the meristems that confer developmental complexity to this angiosperm family. This work allowed to identify MtSUP, a key gene that participates in the genetic regulatory network underlying compound inflorescence and flower development in the model legume M. truncatula.
I would like to thanks the Spanish Ministry of Economy and Competitiveness for the grant (MINECO; BIO2016-75485-R) that supported this work. Special thanks to the Generalitat Valenciana for funding my doctorate with the Santiago Grisolía predoctoral scholarships
Rodas Méndez, AL. (2021). MtSUPERMAN controls the number of flowers per inflorescence and floral organs in the inner three whorls of Medicago truncatula [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171474
TESIS
Prunet, Nathanaël. "Redundancy in the temporal control of floral meristem termination in Arabidopsis thaliana : functional analysis of three modifiers of crabs claw." Lyon, École normale supérieure (sciences), 2008. http://www.theses.fr/2008ENSL0468.
Full textLa croissance aérienne d’Arabidopsis thaliana est assurée par le méristème apical caulinaire (MAC), qui contient des cellules souche dont les divisions permanentes permettent la mise en place continuelle de nouvelles structures. Au cours du développement reproducteur, le MAC produit des méristèmes floraux (MFs) sur ses flancs. Contrairement au MAC et bien qu’ils en soient issus, les MFs ne présentent pas de croissance indéfinie et produisent des fleurs, qui sont des structures déterminées, constituées d’un nombre fixe d’organes. Cette détermination est liée à la répression du gène WUSHEL (WUS), qui confère leur identité aux cellules souche, par le gène homéotique AGAMOUS (AG). Cet arrêt de l’entretien des cellules souche au sein du MF est lié à la mise en place des organes femelles de la fleur, les carpelles, et requiert l’action de SUPERMAN (SUP), qui permet l’établissement de la frontière entre les parties mâle et femelle de la fleur. Le travail de cette thèse consiste en la caractérisation de trois gènes, REBELOTE (RBL), SQUINT (SQN) et ULTRAPETALA1 (ULT1). La mutation combinée de 2 de ces gènes, ou de l’un d’entre eux et de CRABS CLAW (CRC), entraîne une perte marquée de l’arrêt du MF, qui continue alors indéfiniment à produire de nouveaux organes. La gamme de phénotypes obtenus suggère que l’arrêt de l’entretien des cellules souche au centre du MF est un phénomène progressif, contrôlé de manière redondante par plusieurs gènes. Une analyse génétique et moléculaire montre que les phénotypes obtenus résultent d’une baisse d’expression d’AG dans une partie interne de son domaine d’expression, au centre du MF. Cependant, ce défaut d’expression d’AG est insuffisant pour expliquer tous les phénotypes observés, et les données génétiques obtenues suggèrent que RBL, SQN et ULT1 influencent aussi l’activité de SUP. Enfin, des études préliminaires suggèrent que SQN pourrait influencer AG via la voie CLAVATA (CLV), tandis que RBL semble jouer sur la biosynthèse des microARNs, dont une famille, miR172, affecte l’activité d’AG. Finalement, RBL, SQN et ULT1 semblent contribuer à l’homéostasie du développement floral
Herbert, Rob. "Cellular and molecular studies on the shoot terminal meristem of Pharbitis nil Chois. cv. violet during floral evocation." Thesis, Cardiff University, 1991. http://eprints.worc.ac.uk/762/.
Full textAllnutt, G. V. "Characterisation of a leafy homologue, a gene regulating floral meristem identitiy, from the long day plant Silene coeli-rosa." Thesis, Cardiff University, 2000. http://eprints.worc.ac.uk/754/.
Full textLeblond-Castaing, Julie. "Caractérisation de l’interaction des protéines IMA/MIF2 et CSN5 au niveau moléculaire et physiologique." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14466/document.
Full textPlants have the ability to form new organs as a result of indeterminate growth ensured by specific regions of pluripotent cells, called meristems. Flowers are produced by the activity of floral meristems which differ from vegetative meristems in their determinate fate. The INHIBITOR OF MERISTEM ACTIVITY (IMA) gene encoding a Mini Zinc Finger (MIF) protein from tomato (Solanum lycopersicum) regulates the processes of flower and ovule development. IMA inhibits cell proliferation during floral termination, controls the number of carpels during floral development and acts as a repressor of the meristem organizing centre gene WUSCHEL (Sicard et al., 2008). We demonstrated that IMA and its Arabidopsis ortholog MIF2 is also involved in a multiple hormonal signalling pathway, as a putative conserved feature for plant MIF proteins (Hu and Ma, 2006). Alike Arabidopsis MIF1, IMA/MIF2 regulates negatively BR, auxin, cytokinin and gibberellin signalling and positively ABA signaling. Using yeast two-hybrid screening experiments, we identified a strong protein-protein interaction between IMA and the signalosome subunit 5 (CSN5). Interestingly the csn5 mutant in Arabidopsis displays pleiotropic developmental defects such as a bushy phenotype originating from the loss of apical dominance and the alteration in sensitivity to darkness and auxin signals. These phenotypes are strikingly similar to what was described for Arabidopsis MIF1 (Hu and Ma, 2006) and tomato IMA overexpressors plants (Sicard et al., 2008), respectively. Taken together our data strongly suggest that IMA may act as an inhibitor of CSN function through its physical interaction with SlCSN5. The observed converse effects of IMA/MIF2 overexpression or deregulation on plant development and the abundance of developmental marker genes further support the notion of a CSN inhibitory control, since the COP9 signalosome through the specific deneddylation activity of the CSN5 subunit regulates plant hormone signalling
Kim, Yun Ju. "Forward genetic studies towards the understanding of the molecular mechanisms underlying floral meristem determinacy and small RNA function in Arabidopsis." Diss., [Riverside, Calif.] : University of California, Riverside, 2010. http://proquest.umi.com/pqdweb?index=0&did=2019822731&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1274208064&clientId=48051.
Full textIncludes abstract. Title from first page of PDF file (viewed May 18, 2010). Includes bibliographical references. Issued in print and online. Available via ProQuest Digital Dissertations.
Books on the topic "Floral meristem"
Claßen-Bockhoff, Regine, Louis Philippe Ronse De Craene, and Annette Becker, eds. From Meristems to Floral Diversity: Developmental Options and Constraints. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-827-4.
Full textBook chapters on the topic "Floral meristem"
Fiume, Elisa, Helena R. Pires, Jin Sun Kim, and Jennifer C. Fletcher. "Analyzing Floral Meristem Development." In Plant Developmental Biology, 131–42. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-765-5_9.
Full textRaghavan, V. "Floral Evocation and Development of the Floral Meristem." In Developmental Biology of Flowering Plants, 145–68. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1234-8_7.
Full textYanofsky, Martin F., Takashi Araki, Cindy Gustafson-Brown, Sherry A. Kempin, M. Alejandra Mandel, and Beth Savidge. "Genes Specifying Floral Meristem Identity in Arabidopsis." In Plant Molecular Biology, 51–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78852-9_6.
Full textLyndon, R. F. "Meristem functioning: formation of branches, leaves, and floral organs." In Plant Development, 39–57. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7979-9_3.
Full textLyndon, R. F. "Meristem functioning: formation of branches, leaves, and floral organs." In Plant Development, 39–57. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-6844-1_3.
Full textMonfared, Mona M., and Jennifer C. Fletcher. "Genetic and Phenotypic Analysis of Shoot Apical and Floral Meristem Development." In Methods in Molecular Biology, 157–89. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9408-9_7.
Full textMonfared, Mona M., Thai Q. Dao, and Jennifer C. Fletcher. "Genetic and Phenotypic Analysis of Shoot Apical and Floral Meristem Development." In Methods in Molecular Biology, 163–98. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3299-4_7.
Full textDurner, Edward F. "The Latin square design." In Applied plant science experimental design and statistical analysis using the SAS® OnDemand for Academics, 192–203. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249927.0013.
Full textKelly, Alan J., and Douglas Ry Meeks-Wagner. "Molecular Studies of Shoot Meristem Activity during the Vegetative-to-Floral Transition." In Morphogenesis in Plants, 161–79. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1265-7_9.
Full textMcDANIEL, C. N., S. R. SINGER, J. S. GEBHARDT, and K. A. DENNIN. "FLORAL DETERMINATION: A CRITICAL PROCESS IN MERISTEM ONTOGENY." In Manipulation of Flowering, 109–20. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-407-00570-9.50013-2.
Full textConference papers on the topic "Floral meristem"
Venkatasubbu, Thirulogachandar. "Floral development and growth dynamics are influenced by the spatio-temporal mitotic activity of the inflorescence meristem in barley." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1332422.
Full textMichelin, Gael, Yassin Refahi, Raymond Wightman, Henrik Jonsson, Jan Traas, Christophe Godin, and Gregoire Malandain. "Spatio-temporal registration of 3D microscopy image sequences of arabidopsis floral meristems." In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016). IEEE, 2016. http://dx.doi.org/10.1109/isbi.2016.7493464.
Full textReports on the topic "Floral meristem"
Eshed-Williams, Leor, and Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7699862.bard.
Full textLifschitz, Eliezer, and Elliot Meyerowitz. The Relations between Cell Division and Cell Type Specification in Floral and Vegetative Meristems of Tomato and Arabidopsis. United States Department of Agriculture, February 1996. http://dx.doi.org/10.32747/1996.7613032.bard.
Full textWagner, D. Ry, Eliezer Lifschitz, and Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, May 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Full text