Academic literature on the topic 'Flow cytometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flow cytometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Flow cytometry"

1

Kachel, V., and J. Wietzorrek. "Flow cytometry and integrated imaging." Scientia Marina 64, no. 2 (June 30, 2000): 247–54. http://dx.doi.org/10.3989/scimar.2000.64n2247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chao, Zixi, Yong Han, Zeheng Jiao, Zheng You, and Jingjing Zhao. "Prism Design for Spectral Flow Cytometry." Micromachines 14, no. 2 (January 26, 2023): 315. http://dx.doi.org/10.3390/mi14020315.

Full text
Abstract:
Flow cytometers are instruments used for the rapid quantitative analysis of cell suspension. Traditional flow cytometry uses multi-channel filters to detect fluorescence, whereas full-spectrum fluorescence based on dispersion detection is a more effective and accurate method. The application of various dispersion schemes in flow cytometry spectroscopy has been studied. From the perspective of modern detectors and demand for the miniaturization of flow cytometry, prism dispersion exhibits higher and more uniform light energy utilization, meaning that it is a more suitable dispersion method for small flow cytometers, such as microfluidic flow cytometers. Prism dispersion designs include the size, number, and placement of prisms. By deducing the formula of the final position of light passing through the prism and combining it with the formula of transmittance, the design criteria of the top angle and the incident angle of the prism in pursuit of the optimum transmittance and dispersion index can be obtained. Considering the case of multiple prisms, under the premise of pursuing a smaller size, the optimal design criteria for dispersion system composed of multiple prisms can be obtained. The design of prism dispersion fluorescence detection was demonstrated with a microfluidic flow cytometer, and the effectiveness of the design results was verified by microsphere experiments and practical biological experiments. This design criterion developed in this study is generally applicable to spectral flow cytometers.
APA, Harvard, Vancouver, ISO, and other styles
3

Volotovski, I. D., and S. V. Pinchuk. "Flow cytometry. Basics of technology and its application in biology." Proceedings of the National Academy of Sciences of Belarus, Biological Series 67, no. 2 (May 4, 2022): 229–42. http://dx.doi.org/10.29235/1029-8940-2022-67-2-229-242.

Full text
Abstract:
The given review is an attempt of concentrated consideration of flow cytometry problem which is widely used as a fundamental research approach in various fields of biology like cell biology, biophysics, biochemistry and molecular biology and also in applied and diagnostic medicine. The method principle, construction of flow cytometers and their possibilities (study of structure and function state of cell populations and cell sorting), usage of lasers in flow cytometers, wide assortment of fluorophores and monoclonal antibodies. The concrete examples of flow cytometer methods in different experiments are given. The trends in development of flow cytometry are considered.
APA, Harvard, Vancouver, ISO, and other styles
4

Gabriel, Holger, and Wilfried Kindermann. "Flow Cytometry." Sports Medicine 20, no. 5 (November 1995): 302–20. http://dx.doi.org/10.2165/00007256-199520050-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kagan, Jonathan M. "Flow Cytometry." Infection Control and Hospital Epidemiology 12, no. 8 (August 1991): 478–80. http://dx.doi.org/10.2307/30146879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gelven, Paul L., Stephen J. Cina, Gian G. Re, and Sally E. Self. "FLOW CYTOMETRY." Southern Medical Journal 88 (October 1995): S86. http://dx.doi.org/10.1097/00007611-199510001-00193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Delude, Russell L. "Flow cytometry." Critical Care Medicine 33, Suppl (December 2005): S426—S428. http://dx.doi.org/10.1097/01.ccm.0000186781.07221.f8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kagan, Jonathan M. "Flow Cytometry." Infection Control and Hospital Epidemiology 12, no. 8 (August 1991): 478–80. http://dx.doi.org/10.1086/646387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Edwards, Bruce S., and Larry A. Sklar. "Flow Cytometry." Journal of Biomolecular Screening 20, no. 6 (March 24, 2015): 689–707. http://dx.doi.org/10.1177/1087057115578273.

Full text
Abstract:
Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens of thousands of cells per second and more than five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, “sip-and-spit” sampling technology has restricted it to low-sample-throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens of thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multiparameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage, and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry, and parallel sample processing promise dramatically expanded single-cell profiling capabilities to bolster systems-level approaches to drug discovery.
APA, Harvard, Vancouver, ISO, and other styles
10

Bockelman, Henry W. "FLOW CYTOMETRY." Chest 104, no. 3 (September 1993): 13. http://dx.doi.org/10.1016/s0012-3692(16)38837-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Flow cytometry"

1

Davey, Hazel Marie. "Flow cytometry of microorganisms." Thesis, Aberystwyth University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wållberg, Fredrik. "Flow cytometry for bioprocess control." Licentiate thesis, KTH, Biotechnology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1736.

Full text
Abstract:

During bio-technical processing it is important to monitorbiological parameters such as cell growth, viability andproduct formation. Many of the analyses traditionally used areslow to perform and provide only average data for thepopulation. Flow cytometry is a laser-based technique, whichmeasures physical properties of a cell in a flowing stream, ata rate of several thousand cells per second. It offers theprospect of an at-line, multi-parameter analysis of individualmicroorganisms in a population.

In this project several methods for at-line measurements ofbioprocesses were developed such as protocol's for measuringcell concentration, viability and product formation. Theprimary focus was on prokaryotic organisms (E. coli) but eukaryotic organisms (P. pastoris) were included.

The possibility to use volumetric cell counting to measurecell concentration (cell number) was evaluated. It was shownthat the method was applicable for high cell density processesof bothE. coliandP. pastoris.

The combination of Bis- (1,3-dibutylbarbituric acid)trimethine oxonol (depolarised membranes) and propidium iodide(loss of membrane integrity) as fluorescent markers was usefulto measure viability at-line of cells in high cell densityprocesses. The protocol was shown to be reproducible forE. coliandP. pastoris.

The viability staining was used to study the kinetics ofweak organic acids (food preservatives). The protocol provideddata about cell functions such as membrane depolarisation andloss of membrane integrity caused by introducing weak organicacids to shake flask cultures ofE. coli.

Labeling inclusion bodies with fluorescent antibodiesprovided a method, which could specifically monitor theincreased accumulation of recombinant promegapoetin proteinwith process time. This technique was further developed forintracellular staining by application of a permeabilising stepbefore labeling with antibodies. Staining of inclusion bodiesdirectly inside permeabilised cells gave information about thedistribution of protein expression in the cell population.

In conclusion, flow cytometry provides an at-line, singlecell technique for measurement of several biological parametersin bioprocesses.

Key words: flow cytometry, Partec PAS, propidium iodide(PI), bis- (1,3-dibutylbarbituric acid) trimethine oxonol(BOX), Alexa fluor 488, bioprocess,E. coli,P. pastoris, inclusion body, food preservatives,viability, membrane potential

APA, Harvard, Vancouver, ISO, and other styles
3

Helou, Michael [Verfasser]. "Magnetic Flow Cytometry / Michael Helou." Kiel : Universitätsbibliothek Kiel, 2018. http://d-nb.info/1169132596/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stewart, Justin William. "Photonic Crystal-Based Flow Cytometry." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5396.

Full text
Abstract:
Photonic crystals serve as powerful building blocks for the development of lab-on-chip devices. Currently they are used for a wide range of miniaturized optical components such as extremely compact waveguides to refractive-index based optical sensors. Here we propose a new technique for analyzing and characterizing cells through the design of a micro-flow cytometer using photonic crystals. While lab scale flow cytometers have been critical to many developments in cellular biology they are not portable, difficult to use and relatively expensive. By making a miniature sensor capable of replicating the same functionality as the large scale units with photonic crystals, we hope to produce a device that can be easily integrated into a lab-on-chip and inexpensively mass produced for use outside of the lab. Using specialized FDTD software, the proposed technique has been studied, and multiple important flow cytometry functions have been established. As individual cells flow near the crystal surface, transmission of light through the photonic crystal is influenced accordingly. By analyzing the resulting changes in transmission, information such as cell counting and shape characterization have been demonstrated. Furthermore, correlations for simultaneously determining the size and refractive indices of cells has been shown by applying the statistical concepts of central moments.
APA, Harvard, Vancouver, ISO, and other styles
5

Sobek, Daniel. "Microfabricated fused silica flow chambers for flow cytometry." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10262.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.
Includes bibliographical references (leaves 107-116).
by Daniel Sobek.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
6

Collins, Gary Stephen. "Multivariate analysis of flow cytometry data." Thesis, University of Exeter, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shooshtari, Parisa. "Computational techniques for flow cytometry : the application for automated analysis of innate immune response flow cytometry data." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42179.

Full text
Abstract:
Flow cytometry (FCM) is a technique for measuring physical, chemical and biological characteristics of individual cells. Recent advances in FCM have provided researchers with the facility to improve their understanding of the tremendously complex immune system. However, the technology is hampered by current manual analysis methodologies. In this thesis, I developed computational methods for the automated analysis of immune response FCM data to address this bottleneck. I hypothesized that highly accurate results could be obtained through learning from the patterns that a biology expert applies when doing the analysis manually. In FCM data analysis, it is often desirable to identify homogeneous subsets of cells within a sample. Traditionally, this is done through manual gating, a procedure that can be subjective and time-consuming. I developed SamSPECTRAL, an automated spectral-based clustering algorithm to identify FCM cell populations of any shape, size and distribution while addressing the drawbacks of manual gating. A particularly signi cant achievement of SamSPECTRAL was its successful performance in nding rare cell populations. Similarly, in most FCM applications, it is required to match similar cell populations between di erent FCM samples. I developed a novel learning-based cluster matching method that incorporates domain expert knowledge to nd the best matches of target populations among all clusters generated by a clustering algorithm. Immunophenotyping of immune cells and measuring cytokine responses are two main components of immune response FCM data analysis. I combined the SamSPECTRAL algorithm and cluster matching to perform automated immunophenotyping. I also devised a method to measure cytokine responses automatically. After developing computational methods for each of the above analysis components separately, I organized them into a semi-automated pipeline, so they all work together as a uni ed package. My experiments on 216 FCM samples con rmed that my semi-automated pipeline can reproduce manual analysis results highly accurately both for immunophenotyping and measuring cytokine responses. My other main contributions were correlation analysis of intracellular and secreted cytokines, and developing a formula called GiMFI to improve measuring functional response of cytokine-producing cells using ow cytometry assay.
APA, Harvard, Vancouver, ISO, and other styles
8

Condrau, Marc Anton. "Time-resolved fluorescence measurement in flow cytometry /." [S.l.] : [s.n.], 1993. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Porter, Jonathan David. "Applications of flow cytometry to bacterial ecology." Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Herrala, S. (Sauli). "Level set clustering in a flow cytometry dataset." Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201604191509.

Full text
Abstract:
Pro Gradu -työn tarkoituksena oli testata kuinka hyvin tasopuumenetelmä soveltuu virtaussytometria-aineiston klusterointiin, ja verrata sitä k-lähimmän naapurin menetelmään. Tasopuumenetelmää myös parannettiin lisäämällä Nelder-Mead (NM) -optimointimenetelmä yhteen työvaiheeseen, jotta laskenta-ajat pysyisivät hallinnassa. Virtaussytometriassa mitataan yksittäisia soluja ja niiden ominaisuuksia, kun ne kulkevat laserin läpi. Ennen mittausta näyte on käsitelty fluerosoivalla aineella, jolloin solu hohtaa valon aallonpituuksia kulkiessaan laserin läpi. Nykyaikaiset laitteet pystyvät mittaamaan satoja tuhansia soluja ja kymmeniä aallonpituuksia kerralla. Tälläisen aineiston käsittely perinteisillä menetelmillä on erittäin raskasta. FlowCAP-konsortio perustettiin testaamaan kuinka hyvin erilaiset klusterointi- ja luokittelumenetelmät soveltuvat sytometria-aineiston käsittelyyn. Tässä gradussa käytetään FlowCAP II -kisasta “akuutti myelooinen leukemia” -aineistoa, joka sisältää 43 sairastunutta ja 359 tervettä verrokkia. Henkilön luokitteleminen terveisiin ja sairaisiin tehtiin tukivektorikoneella tasopuumenetelmästä tai k-lähimmän naapurin menetelmästä saatuja klustereita hyödyntäen. NM-menetelmällä saatiin selvä ajallinen hyöty ilman suurempaa menetystä tarkkuudessa, koska NM-menetelmä pääsi aina hyvin lähelle alkuperäisen algoritmin tulosta. Tasopuumenetelmä itsessään ei ollut k-lähimmän naapurin menetelmää parempi. Tämä johtui osaksi siitä, että variaatio tasopuumenetelmän tuloksien välillä oli hyvin suuri. Ero tasopuumenetelmän ja k-lähimmän naapurin menetelmän välillä oli kuitenkin pieni.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Flow cytometry"

1

Vielh, Philippe. Flow cytometry. New York: Igaku-Shoin Medical Publishers, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Macey, Marion G., ed. Flow Cytometry. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-451-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jacquemin-Sablon, Alain, ed. Flow Cytometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ormerod, M. G. Flow cytometry. Oxford: BIOS Scientific Publishers in association with the Royal Microscopical Society, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ormerod, M. G. Flow cytometry. 2nd ed. Oxford, UK: Bios Scientific Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sobti, Ranbir Chander, Awtar Krishan, and Devendra K. Agrawal, eds. Flow Cytometry. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-4553-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yen, Andrew. Flow Cytometry. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003574323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grogan, W. McLean. Guide to flow cytometry methods. New York: M. Dekker, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

V, Watson James. Introduction to flow cytometry. Cambridge [England]: Cambridge University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jaroszeski, Mark J., and Richard Heller. Flow Cytometry Protocols. New Jersey: Humana Press, 1997. http://dx.doi.org/10.1385/0896033546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Flow cytometry"

1

Brown, Spencer C. "Cytometrie Tout Terrain or Bush DNA Cytometry." In Flow Cytometry, 227–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jensen, Bruce D. "Cytosolic Events Related to Cell Activation: Potential Interaction between Signal and Energy Transduction Pathways in Smooth Muscle Cells." In Flow Cytometry, 3–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kieda, Claudine, Nadine Bizouarne, Véronique Denis, and Michèle Mitterrand. "T Lymphocytes Recognition Molecules in Homing : A Flow Cytometry Study of Lectin-Glycoconjugates Interactions." In Flow Cytometry, 155–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carayon, P. "Three- and Four-Color Immunofluorescence Analysis by Flow Cytometry." In Flow Cytometry, 165–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eisert, Wolfgang G. "Energy Transfer." In Flow Cytometry, 189–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Amblard, F. "Fluid Mechanical Properties of Flow Cytometers and Assessment Cell-Cell Adhesion Forces." In Flow Cytometry, 205–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

DeJong, M. O., H. Rozemuller, J. G. J. Bauman, and J. W. M. Visser. "Use of biotin-labeled growth factors for receptor studies." In Flow Cytometry, 219–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crissman, Harry A. "Bromodeoxuridine Procedures for Analysis of DNA Synthesis." In Flow Cytometry, 245–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cram, L. Scott, J. Fawcett, and L. L. Deaven. "Flow Cytogenetics: Fundamentals and New Developments." In Flow Cytometry, 259–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bayer, Jan A., and Ger van den Engh. "In Situ Hybridization." In Flow Cytometry, 269–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84616-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Flow cytometry"

1

Yun, Seok-Hyun Andy. "Multipass flow cytometry using laser cell barcoding." In High-Throughput Biophotonics: Imaging, Spectroscopy, and Beyond X, edited by Keisuke Goda and Kevin K. Tsia, 9. SPIE, 2025. https://doi.org/10.1117/12.3040414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jooken, Stijn, Kirill Zinoviev, Gunay Yurtsever, Koen de Wijs, Anabel De Proft, Zeinab Jafari, Ana Lebanov, et al. "On-chip flow cytometry using integrated photonics." In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XXIII, edited by Attila Tarnok, Jessica P. Houston, and Xuantao Su, 1. SPIE, 2025. https://doi.org/10.1117/12.3042906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Samimi, Kayvan, Ojaswi Pasachhe, Wenxuan Zhao, Amani A. Gillette, Meghana A. Kalluri, Alex Sorenson, Rupsa Datta, and Melissa C. Skala. "Autofluorescence lifetime flow cytometry and single cell deposition." In Multiscale Imaging and Spectroscopy VI, edited by Alex J. Walsh, Darren M. Roblyer, and Paul J. Campagnola, 6. SPIE, 2025. https://doi.org/10.1117/12.3041767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Charles. "In Vivo Flow Cytometry: From Bench to Bedside." In Microscopy Histopathology and Analytics, MS3A.1. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/microscopy.2024.ms3a.1.

Full text
Abstract:
<br/>The original in vivo flow cytometer was developed for noninvasive detection and quantification of fluorescent cells in the circulation. Here I will present our latest effort for clinical translation using label-free detection. Full-text article not available; see video presentation
APA, Harvard, Vancouver, ISO, and other styles
5

Sao, Sunit Kumar, Satwik Srimansu Sahoo, Abhinav Ajay Jha, and Earu Banoth. "Real-Time Synchronous Hyper Image and Scattered Light Acquisition using Portable Microcontroller from Continuous Flow of Sample." In Frontiers in Optics, JD4A.65. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jd4a.65.

Full text
Abstract:
This work presents a new system for synchronized data collection in Multiphasic Microfluidics Imaging Flow-Cytometry ( MIFC), combining flow cytometry and microfluidics imaging. This comprises simultaneous signal and image capture, live synchronization, and a tailored hardware interface.
APA, Harvard, Vancouver, ISO, and other styles
6

Sklar, Larry A. "Lasers in Flow Cytometry and Biotechnology." In Compact Blue-Green Lasers. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/cbgl.1992.tha2.

Full text
Abstract:
Lasers are used by the biomedical community in many applications. These include flow cytometry, microscope imaging, solution spectroscopy, and very recently, optical manipulation of cells and subcellular particles. This paper reviews applications of lasers involving fluorescent probes. In most applications, these technologies require ~10 mW of laser power focused to cellular dimension (except for the solution measurements). I estimate that there are several thousand flow cytometers, several hundred laser imaging systems, and several hundred laser spectroscopy instruments distributed between the biomedical, physics and chemistry communities. Optical trapping as a commercial technology is emerging rapidly at the time this paper is being written using IR diode lasers to manipulate the cells.
APA, Harvard, Vancouver, ISO, and other styles
7

Sounders, George C., Jomes H. Jett, John C. Martin, and Richard A. Keller. "Flow Cytometric Ultrasensitive Molecular Quantitation Via Antibody-Antigen Interactions." In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/laca.1987.ma2.

Full text
Abstract:
The traditional domain of flow cytometry has been the measurement of properties of discrete biological particles - primarily cells or chromosomes. Most flow cytometric fluorescence measurements of cell properties are determinations of the amount of a specific type of molecule in a cell, such as DNA or a cell surface antigen. Since the inception of flow cytometry, there has been a continuing guest for more sensitive instruments and for techniques to detect and quantitate low levels of fluorescence. A generally accepted value for the sensitivity of detection of fluorescein on the surface of a cell is 3 000 to 5 000 molecules.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhong, Cheng Frank, Jing Yong Ye, Andrzej Myc, Zhengyi Cao, Jolanta Kukowska, James R. Baker, and Theodore B. Norris. "In vivo Flow Cytometry." In Frontiers in Optics. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/fio.2004.ftue5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laguna, Sonia. "Light-sheet flow cytometry." In Virtual 12th Light Sheet Fluorescence Microscopy Conference 2020. Royal Microscopical Society, 2020. http://dx.doi.org/10.22443/rms.lsfm2020.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Flow Cytometry Data Analysis." In 2020 28th Signal Processing and Communications Applications Conference (SIU). IEEE, 2020. http://dx.doi.org/10.1109/siu49456.2020.9302373.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Flow cytometry"

1

Cai, H., K. Kommander, P. S. White, and J. P. Nolan. Flow cytometry-based DNA hybridization and polymorphism analysis. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/663513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CORSCADDENorscadden, Louise, and Arpaporn Sutipatanasomboon. The Definite Guide to Flow Cytometry for Scientists. ConductScience, December 2022. http://dx.doi.org/10.55157/cs20221213.

Full text
Abstract:
Flow cytometry is an analytical technique that examines cells suspended in fluids. It uses a built-in laser beam to illuminate individual cells as the fluid passes through. The illumination causes fluorescence and scattered lights, which are emitted and reflected from the examining cell. These lights are split and filtered onto detectors and converted into electrical signals.
APA, Harvard, Vancouver, ISO, and other styles
3

Sklar, L. A., L. C. Seamer, F. Kuckuck, E. Prossnitz, B. Edwards, and G. Posner. Sample handling for kinetics and molecular assembly in flow cytometry. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/663512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stenzel, Tomasz Adam. Could pigeon circoviruses (PiCVs) evolve through recombination in a "one loft race" type of pigeon rearing system? University Warmia and Mazury in Olsztyn, March 2024. http://dx.doi.org/10.31648/uwmf8a88c4521bf4075853ce87b403baa56.

Full text
Abstract:
Row data: ddPCR (PiCV viremia and virus shedding), gene expression evaluatin ( IFN-γ and related genes), flow cytometry (percentage of BIgM+ cells including apoptotic ones), genome recombination (from RDP5 software). The data were generated as a result of NCN grant.
APA, Harvard, Vancouver, ISO, and other styles
5

Chisholm, S. W., and B. J. Binder. Measurement of Synechococcus in situ growth rates using flow cytometry and rRNA-targeted probes. Final report. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/355033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marples, Brian, Olga Kovalchuk, Michele McGonagle, Alvaro Martinez, and Wilson, George, D. The Application of Flow Cytometry to Examine Damage Clearance in Stem Cells From Whole-Body Irradiated Mice. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/972636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jett, J. H. National flow cytometry and sorting research resource. Annual progress report, July, 1, 1994--June 30, 1995, Year 12. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/475610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ยมภักดี, ชุลี, and บุญเอก ยิ่งยงณรงค์กุล. ผลของพิโนสโทรบินจากกระชายเหลืองที่มีต่อการต้านการเพิ่มจำนวนของเซลล์ไลน์มะเร็งบางชนิดและการใช้ไลโปโซม เพื่อเพิ่มประสิทธิภาพการออกฤทธิ์ของพิโนสโทรบิน. จุฬาลงกรณ์มหาวิทยาลัย, 2015. https://doi.org/10.58837/chula.res.2015.39.

Full text
Abstract:
พิโนสโทรบิน เป็นฟลาวาโนนชนิดหนึ่งที่พบในกระชายเหลือง (Boesenbergia pandurata) ถูกค้นพบว่ามีฤทธิ์ยับยั้งวิถีการส่งสัญญาณของแคลเซียมที่มีผลต่อการควบคุมการเจริญของยีสต์ Saccharomyces cerevisiae ในการศึกษานี้มุ่งหมายที่จะศึกษาฤทธิ์ต้านการเจริญของพิโนสโทรบินและพิโนสโทรบินที่บรรจุในไลโปโซม (LipoPino) ในเซลล์ไลน์มะเร็งบางชนิด รวมทั้งศึกษาผลของพิโนสโทรบินที่มีต่อวัฎจักรการแบ่งเซลล์ของเซลล์ไลน์มะเร็งที่ไวต่อพิโนสโทรบิน โดยได้ศึกษาฤทธิ์ของพิโนสโทรบินที่มีต่อการต้านการเจริญของเซลล์มะเร็งเม็ดเลือดขาว Jurkat เซลล์มะเร็งกระเพาะอาหาร KATOIII เซลล์มะเร็งลำไส้ SW620 เซลล์มะเร็งตับ HepG2 เซลล์มะเร็งปากมดลูก Ca-Ski และเซลล์มะเร็งเต้านม BT474 พบว่าเซลล์มะเร็งกระเพาะอาหาร KATOIII มีความไวต่อพิโนสโทรบินที่สุด ที่ค่า IC₅₀ 24.7±4.5 ไมโครโมลาร์ การใช้ LipoPino สามารถเพิ่มฤทธิ์ต้านการเจริญของเซลล์มะเร็งของพิโนสโทรบินโดยมีค่า IC50 อยู่ในช่วง 2.6-9.3 ไมโครโมลาร์ (ยกเว้นในเซลล์มะเร็ง BT474 and SW620 ที่พบว่าไลโปโซมมีความเป็นพิษที่สูงในเซลล์ไลน์ทั้งสองชนิด) โดยไลโปโซมช่วยเพิ่มประสิทธิภาพของพิโนสโทรบินได้ 2.7->20.9 เท่าเมื่อเทียบกับฤทธิ์ของการใช้พิโนสโทรบินอย่างเดียว ในการศึกษาผลของพิโนสโทรบินที่มีต่อวัฎจักรการแบ่งเซลล์โดยวิธี Flow cytometry พบว่าโดยการใช้พิโนสโทรบินที่ความเข้มข้น 2 เท่าของค่า IC₅₀ ณ วันที่ 4 พบว่าเซลล์มะเร็งเม็ดเลือดขาว Jurkat และเซลล์มะเร็งเต้านม BT474 มีประชากรเซลล์ในระยะ sub G1 สูงกว่าอย่างมีนัยสำคัญจากกลุ่มควบคุมที่ไม่มีพิโนสโทรบิน และพบว่าประชากรของเซลล์มะเร็งกระเพาะอาหาร KATOIII หยุดอยู่ที่ระยะ G2/M อย่างมีนัยสำคัญ เมื่อเทียบกับกลุ่มควบคุม ผลจากการศึกษานี้แนะนำว่าพิโนสโทรบิน สามารถถูกใช้เป็นสารต้านการเจริญในเซลล์มะเร็งหลายๆชนิดได้ และไลโปโซมสามารถนำมาใช้เป็นสิ่งนำส่งพิโนสโทรบินเพื่อเพิ่มประสิทธิภาพการออกฤทธิ์ในเซลล์มะเร็งบางชนิดได้
APA, Harvard, Vancouver, ISO, and other styles
9

Loy, J. Dustin, and D. L. Hank Harris. Evaluation of in vivo Hemocyte Phagocytosis of Microsphere Beads in Litopenaeus vannamei Utilizing Flow Cytometry Following Administration of Bacterial Lipopolysaccharides. Ames (Iowa): Iowa State University, January 2010. http://dx.doi.org/10.31274/ans_air-180814-1257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thongtan, Thananya, Poonlarp Cheepsunthorn, and Kiat Ruxrungtham. An analysis and studies expression of receptor molecule on microglia cells to inhibits infection of the cells from Japanese encephalitis virus : Research report (Year 2009). Chulalongkorn University, 2009. https://doi.org/10.58837/chula.res.2009.14.

Full text
Abstract:
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is a major cause of viral encephalitis in Asia. Even though the principle target cells for JEV in the central nervous system are neurons, the microglia is activated in response to JEV infection. This research aimed to investigate the relationship between JEV and microglial cells. The percentage of JEV infectivity in mouse microglial (BV-2) cell line at 8, 15 and 24 hr post infection was determined by flow cytometry. It was found that the percentage of infected cells were approximately 53.5, 71.3 and 83.6 respectively. The JEV binding protein (s) expressed on the surface of BV-2 cells was also identified. Using One dimensional and Two-dimensional gel electrophoresis to separate the membrane proteins, we later identified the 43 kDa laminin receptor precursor protein as a JEV binding protein by virus overlay protein binding assay (VOPBA) followed with liquid chromatography-mass spectrometry (LC/MS/MS). This newly identified JEV binding protein was further characterized by infection inhibition assay. BV-2 cells were mock-infected or infected with JEV in the presence of either 0 (control), 5,10 and 20 μg anti-laminin receptor antibody or 20 μg soluble laminin. The percentage of inhibition of JEV infection was determined by flow cytometry. Results showed a dose dependent pattern of inhibition in the presence of anti-laminin receptor antibody, determined at 15 hr post infection, compared to non-relevant antibody and control. Taken together, 43 kDa laminin receptor precursor protein is verified as JEV putative receptor on mouse microglial cell surface.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography