To see the other types of publications on this topic, follow the link: Flow-induced crystallization.

Journal articles on the topic 'Flow-induced crystallization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Flow-induced crystallization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Ziyue, and Savvas G. Hatzikiriakos. "Flow-induced crystallization of polylactides." Journal of Rheology 66, no. 2 (2022): 257–73. http://dx.doi.org/10.1122/8.0000372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fortelný, Ivan, Jana Kovářová, and Josef Kovář. "Flow-Induced Crystallization of High-Density Polyethylene." Collection of Czechoslovak Chemical Communications 60, no. 10 (1995): 1733–40. http://dx.doi.org/10.1135/cccc19951733.

Full text
Abstract:
Crystallization induced by flow in the capillary viscometer was studied for four grades of linear polyethylene. From rheological and DSC measurements it follows that crystallization was induced in all samples under study at temperatures higher than melting temperatures of the same samples crystallized at rest. The maximum temperature of flow-induced crystallization increases with increasing molar mass of polyethylene. Flow-induced crystallization of injection moulding grades of polyethylene only takes place in a limited interval of shear rates. This effect is explained as a consequence of the
APA, Harvard, Vancouver, ISO, and other styles
3

Derakhshandeh, Maziar, Bashar Jazrawi, George Hatzikiriakos, Antonios K. Doufas, and Savvas G. Hatzikiriakos. "Flow-induced crystallization of polypropylenes in capillary flow." Rheologica Acta 54, no. 3 (2014): 207–21. http://dx.doi.org/10.1007/s00397-014-0829-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Swartjes, F. H. M., G. W. M. Peters, S. Rastogi, and H. E. H. Meijer. "Stress Induced Crystallization in Elongational Flow." International Polymer Processing 18, no. 1 (2003): 53–66. http://dx.doi.org/10.3139/217.1719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Massaro, R., P. Roozemond, M. D'Haese, and P. Van Puyvelde. "Flow-Induced Crystallization of Polyamide-6." International Polymer Processing 33, no. 3 (2018): 327–35. http://dx.doi.org/10.3139/217.3524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coppola, Salvatore, Nino Grizzuti, and Pier Luca Maffettone. "Microrheological Modeling of Flow-Induced Crystallization." Macromolecules 34, no. 14 (2001): 5030–36. http://dx.doi.org/10.1021/ma010275e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nazari, Behzad, Alicyn M. Rhoades, Richard P. Schaake, and Ralph H. Colby. "Flow-Induced Crystallization of PEEK: Isothermal Crystallization Kinetics and Lifetime of Flow-Induced Precursors during Isothermal Annealing." ACS Macro Letters 5, no. 7 (2016): 849–53. http://dx.doi.org/10.1021/acsmacrolett.6b00326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McHugh, A. J., and A. K. Doufas. "Modeling flow-induced crystallization in fiber spinning." Composites Part A: Applied Science and Manufacturing 32, no. 8 (2001): 1059–66. http://dx.doi.org/10.1016/s1359-835x(00)00170-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cascone, Annarita, and René Fulchiron. "Squeeze flow induced crystallization monitoring in polymers." Polymer Testing 30, no. 7 (2011): 760–64. http://dx.doi.org/10.1016/j.polymertesting.2011.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dairanieh, I. S., A. J. Mchugh, and A. K. Doufas. "A Phenomenological Model for Flow-Induced Crystallization." Journal of Reinforced Plastics and Composites 18, no. 5 (1999): 464–71. http://dx.doi.org/10.1177/073168449901800506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bischoff White, Erica E., H. Henning Winter, and Jonathan P. Rothstein. "Extensional-flow-induced crystallization of isotactic polypropylene." Rheologica Acta 51, no. 4 (2011): 303–14. http://dx.doi.org/10.1007/s00397-011-0595-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ma, Zhe, Luigi Balzano, and Gerrit W. M. Peters. "Pressure Quench of Flow-Induced Crystallization Precursors." Macromolecules 45, no. 10 (2012): 4216–24. http://dx.doi.org/10.1021/ma2027325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lamberti, Gaetano. "ChemInform Abstract: Flow Induced Crystallization of Polymers." ChemInform 45, no. 21 (2014): no. http://dx.doi.org/10.1002/chin.201421287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rong, Yan, Lei Shi, Hui Ping He, and Lan Zhang. "Simulation of the Flow-Induced Crystallization of Polypropylene Based on Molecular Kinetic Model." Advanced Materials Research 941-944 (June 2014): 1237–42. http://dx.doi.org/10.4028/www.scientific.net/amr.941-944.1237.

Full text
Abstract:
A model for the isothermal flow-induced crystallization (FIC) of polypropylene melt in a simple shear flow is developed. The model is based on the molecular kinetic theory. The first normal stress difference of the stress tensor, calculated according to a molecular model, is assumed as the driving force of the flow-induced nucleation. Crystallization is described as a spherulitical nucleation and growth process. The theoretical predictions of the evolution of the viscosity in steady shear flow of iPP are in agreement with the experimental findings. The relative influence of the mechanical and
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Jin Yan, Jing Bo Chen, and Chang Yu Shen. "Numerical Simulation of a First Normal Stress Difference-Based Model for Shear-Induced Crystallization of Polyethylene." Advanced Materials Research 266 (June 2011): 130–34. http://dx.doi.org/10.4028/www.scientific.net/amr.266.130.

Full text
Abstract:
The paper presents a numerical simulation for the isothermal flow-induced crystallization of polyethylene under a simple shear flow. The effect of flow on crystllization is considered through the simple mathematical relationship between the additional number of nuclei induced by shear treatment and the first normal stress difference. Leonov viscoelastic model and Avrami model are used to describe the normal stress difference and the crystallization kinetics, respectively. It is found that the short-term shear treatment has a large effect on the crystallization dynamics of polyethylene , but th
APA, Harvard, Vancouver, ISO, and other styles
16

Ma, Zhe, Luigi Balzano, Giuseppe Portale, and Gerrit W. M. Peters. "Flow induced crystallization in isotactic polypropylene during and after flow." Polymer 55, no. 23 (2014): 6140–51. http://dx.doi.org/10.1016/j.polymer.2014.09.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ahmad, Naveed, Elsayed Fouad, and Farooq Ahmad. "Effect of Shear Flow on Crystallization of Sydiotactic Polypropylene/Clay Composites." Engineering, Technology & Applied Science Research 8, no. 4 (2018): 3108–12. https://doi.org/10.5281/zenodo.1450562.

Full text
Abstract:
The high sensitivity of crystallization to shear flow is a subject of great research interest the last several years. A set of syndiotactic polypropylene/clay composite samples were used to examine the effect of shear flow on crystallization kinetics. This phenomenon alters both processing and material final properties. In the present work, the effects of clay contents and shear flow on the rate of flow induced crystallization were investigated using rheological technique. Small amplitude oscillatory shear experiments were performed using advanced rheometric expansion system (ARES). The crysta
APA, Harvard, Vancouver, ISO, and other styles
18

Ahmad, N., E. Fouad, and F. Ahmad. "Effect of Shear Flow on Crystallization of Sydiotactic Polypropylene/Clay Composites." Engineering, Technology & Applied Science Research 8, no. 4 (2018): 3108–12. http://dx.doi.org/10.48084/etasr.2079.

Full text
Abstract:
The high sensitivity of crystallization to shear flow is a subject of great research interest the last several years. A set of syndiotactic polypropylene/clay composite samples were used to examine the effect of shear flow on crystallization kinetics. This phenomenon alters both processing and material final properties. In the present work, the effects of clay contents and shear flow on the rate of flow induced crystallization were investigated using rheological technique. Small amplitude oscillatory shear experiments were performed using advanced rheometric expansion system (ARES). The crysta
APA, Harvard, Vancouver, ISO, and other styles
19

Janeschitz-Kriegl, H. "Previous Experimental Polymer Rheology Versus Flow Induced Crystallization." International Polymer Processing 28, no. 3 (2013): 261–66. http://dx.doi.org/10.3139/217.2694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

McHugh, A. J., D. A. Tree, B. Pornnimit, and G. W. Ehrenstein. "Flow-Induced Crystallization and Self-Reinforcement During Extrusion." International Polymer Processing 6, no. 3 (1991): 208–11. http://dx.doi.org/10.3139/217.910208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kornfield, Julie, Shuichi Kimata, Takashi Sakurai, et al. "Molecular Aspects of Flow-Induced Crystallization of Polymers." Progress of Theoretical Physics Supplement 175 (2008): 10–16. http://dx.doi.org/10.1143/ptps.175.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Doufas, Antonios K., and Anthony J. McHugh. "Simulation of film blowing including flow-induced crystallization." Journal of Rheology 45, no. 5 (2001): 1085–104. http://dx.doi.org/10.1122/1.1392300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kannan, K., and K. R. Rajagopal. "Simulation of fiber spinning including flow-induced crystallization." Journal of Rheology 49, no. 3 (2005): 683–703. http://dx.doi.org/10.1122/1.1879042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

khalil, Mouhamad, Pascal hébraud, Ali Mcheik, Houssein Mortada, Hassan Lakis, and Tayssir Hamieh. "Elongational Flow-induced Crystallization in Polypropylene/Talc Nanocomposites." Physics Procedia 55 (2014): 259–64. http://dx.doi.org/10.1016/j.phpro.2014.07.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Doufas, Antonios K., Anthony J. McHugh, and Chester Miller. "Simulation of melt spinning including flow-induced crystallization." Journal of Non-Newtonian Fluid Mechanics 92, no. 1 (2000): 27–66. http://dx.doi.org/10.1016/s0377-0257(00)00088-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Doufas, Antonios K., Anthony J. McHugh, Chester Miller, and Aravind Immaneni. "Simulation of melt spinning including flow-induced crystallization." Journal of Non-Newtonian Fluid Mechanics 92, no. 1 (2000): 81–103. http://dx.doi.org/10.1016/s0377-0257(00)00089-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pantani, Roberto, Felice De Santis, Vito Speranza, and Giuseppe Titomanlio. "Analysis of flow induced crystallization through molecular stretch." Polymer 105 (November 2016): 187–94. http://dx.doi.org/10.1016/j.polymer.2016.10.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Seo, Jiho, Hideaki Takahashi, Behzad Nazari, Alicyn M. Rhoades, Richard P. Schaake, and Ralph H. Colby. "Isothermal Flow-Induced Crystallization of Polyamide 66 Melts." Macromolecules 51, no. 11 (2018): 4269–79. http://dx.doi.org/10.1021/acs.macromol.8b00082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

McHugh, A. J., R. K. Guy, and D. A. Tree. "Extensional flow-induced crystallization of a polyethylene melt." Colloid & Polymer Science 271, no. 7 (1993): 629–45. http://dx.doi.org/10.1007/bf00652825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tian, Nan, Weiqing Zhou, Kunpeng Cui, et al. "Extension Flow Induced Crystallization of Poly(ethylene oxide)." Macromolecules 44, no. 19 (2011): 7704–12. http://dx.doi.org/10.1021/ma201263z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Housmans, Jan-Willem, Gerrit W. M. Peters, and Han E. H. Meijer. "Flow-induced crystallization of propylene/ethylene random copolymers." Journal of Thermal Analysis and Calorimetry 98, no. 3 (2009): 693–705. http://dx.doi.org/10.1007/s10973-009-0532-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Titomanlio, G., and G. Marrucci. "Capillary experiments of flow induced crystallization of HDPE." AIChE Journal 36, no. 1 (1990): 13–18. http://dx.doi.org/10.1002/aic.690360104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Acierno, S., and N. Grizzuti. "Flow-induced crystallization of polymer: theory and experiments." International Journal of Material Forming 1, S1 (2008): 583–86. http://dx.doi.org/10.1007/s12289-008-0323-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Graham, Richard S. "ChemInform Abstract: Modelling Flow-Induced Crystallization in Polymers." ChemInform 45, no. 22 (2014): no. http://dx.doi.org/10.1002/chin.201422260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lamberti, Gaetano. "Flow-induced crystallization during isotactic polypropylene film casting." Polymer Engineering & Science 51, no. 5 (2011): 851–61. http://dx.doi.org/10.1002/pen.21891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bushman, A. C., and A. J. McHugh. "Transient flow-induced crystallization of a polyethylene melt." Journal of Applied Polymer Science 64, no. 11 (1997): 2165–76. http://dx.doi.org/10.1002/(sici)1097-4628(19970613)64:11<2165::aid-app13>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

McHugh, A. J., and J. A. Spevacek. "The kinetics of flow-induced crystallization from solution." Journal of Polymer Science Part B: Polymer Physics 29, no. 8 (1991): 969–79. http://dx.doi.org/10.1002/polb.1991.090290807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ziabicki, Andrzej, and Giovanni Carlo Alfonso. "A simple model of flow-induced crystallization memory." Macromolecular Symposia 185, no. 1 (2002): 211–31. http://dx.doi.org/10.1002/1521-3900(200208)185:1<211::aid-masy211>3.0.co;2-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Song, Ying-Nan, Qing-Xiang Zhao, Shu-Gui Yang, et al. "Flow-induced crystallization of polylactide stereocomplex under pressure." Journal of Applied Polymer Science 135, no. 25 (2018): 46378. http://dx.doi.org/10.1002/app.46378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Janchai, Khunanya, and Masayuki Yamaguchi. "Shear-induced crystallization of polypropylene/low-density polyethylene blend." Journal of Rheology 68, no. 1 (2023): 59–69. http://dx.doi.org/10.1122/8.0000742.

Full text
Abstract:
Shear-induced crystallization behavior was studied using a phase-separated blend comprising a polypropylene continuous phase and a low-density polyethylene (LDPE) dispersion, which is known to show strain hardening in transient elongation viscosity. In this study, crystallization behavior was mainly evaluated by the light intensity transmitted through a transparent parallel-plate geometry. It was found that shear-induced crystallization was greatly accelerated by the addition of LDPE, resulting in a high crystallization temperature and a highly oriented structure. When the sample was cooled sl
APA, Harvard, Vancouver, ISO, and other styles
41

Kubo, Hiroshi, Masami Okamoto, and Tadao Kotaka. "Elongational flow-induced crystallization in supercooled poly(ethylene terephthalate) with different crystallization habit." Polymer 39, no. 20 (1998): 4827–34. http://dx.doi.org/10.1016/s0032-3861(97)10230-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Song, Kun, Lin-Feng Wu, Dong Liu, Liangbin Li, Jing Song, and Zhe Wang. "Revealing the detailed structure in flow-induced crystallization of semicrystalline polymers." Physical Chemistry Chemical Physics 22, no. 43 (2020): 25206–14. http://dx.doi.org/10.1039/d0cp04964f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kearns, Kenneth L., Justin Scherzer, Marius Chyasnavichyus, et al. "Measuring Flow-Induced Crystallization Kinetics of Polyethylene after Processing." Macromolecules 54, no. 5 (2021): 2101–12. http://dx.doi.org/10.1021/acs.macromol.0c02477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Janeschitz-Kriegl, H., and E. Ratajski. "Crystallization in Polymer Melts: Metamorphism of Flow Induced Nuclei." International Polymer Processing 26, no. 4 (2011): 460–63. http://dx.doi.org/10.3139/217.2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Janeschitz-Kriegl, H. "Some remarks on flow induced crystallization in polymer melts." Journal of Rheology 57, no. 4 (2013): 1057–64. http://dx.doi.org/10.1122/1.4808439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Zhen, Zhe Ma, and Liangbin Li. "Flow-Induced Crystallization of Polymers: Molecular and Thermodynamic Considerations." Macromolecules 49, no. 5 (2016): 1505–17. http://dx.doi.org/10.1021/acs.macromol.5b02688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Baig, C., and B. J. Edwards. "Atomistic simulation of flow-induced crystallization at constant temperature." EPL (Europhysics Letters) 89, no. 3 (2010): 36003. http://dx.doi.org/10.1209/0295-5075/89/36003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Seo, Jiho, Anne M. Gohn, Richard P. Schaake, Daniele Parisi, Alicyn M. Rhoades, and Ralph H. Colby. "Shear Flow-Induced Crystallization of Poly(ether ether ketone)." Macromolecules 53, no. 9 (2020): 3472–81. http://dx.doi.org/10.1021/acs.macromol.9b02611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Xu, Donghua, Zhigang Wang, and Jack F. Douglas. "Crystallization-Induced Fluid Flow in Polymer Melts Undergoing Solidification." Macromolecules 40, no. 6 (2007): 1799–802. http://dx.doi.org/10.1021/ma0628174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hwang, Wook Ryol, Gerrit W. M. Peters, Martien A. Hulsen, and Han E. H. Meijer. "Modeling of Flow-Induced Crystallization of Particle-Filled Polymers." Macromolecules 39, no. 24 (2006): 8389–98. http://dx.doi.org/10.1021/ma061205g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!