To see the other types of publications on this topic, follow the link: Flow modeling.

Journal articles on the topic 'Flow modeling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Flow modeling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sindeev, S. V., S. V. Frolov, D. Liepsch, and A. Balasso. "MODELING OF FLOW ALTERATIONS INDUCED BY FLOW-DIVERTER USING MULTISCALE MODEL OF HEMODYNAMICS." Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 23, no. 1 (2017): 025–32. http://dx.doi.org/10.17277/vestnik.2017.01.pp.025-032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elizabeth Philip, Babitha, and Jaseela K H. "Traffic Flow Modeling and Study of Traffic Congestion." International Journal of Scientific Engineering and Research 4, no. 1 (2016): 67–68. https://doi.org/10.70729/ijser15667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Giovangigli, Vincent. "Multicomponent flow modeling." Science China Mathematics 55, no. 2 (2011): 285–308. http://dx.doi.org/10.1007/s11425-011-4346-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carr, John, and Mark Howells. "Modeling pig flow." Livestock 21, no. 3 (2016): 180–86. http://dx.doi.org/10.12968/live.2016.21.3.180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Melikyan, V. Sh, V. D. Hovhannisyan, M. T. Grigoryan, A. A. Avetisyan, and H. T. Grigoryan. "Real Number Modeling Flow of Digital to Analog Converter." Proceedings of Universities. Electronics 26, no. 2 (2021): 144–53. http://dx.doi.org/10.24151/1561-5405-2021-26-2-144-153.

Full text
Abstract:
This work introduces a flow of digital to analog (DAC) implementation in digital environment of SystemVerilog. Unlike the classical Verilog models, this digital to analog converter behavioral model is analog. Such type of model creation in general is called real number modeling. The DAC model is verified by the HSPICE and SystemVerilog Co-simulations which show its applicability in different register transfer level verification environments. The digital environment with real number modeled DAC runs around 8 times faster than the same environment with SPICE model. At the same time, the output s
APA, Harvard, Vancouver, ISO, and other styles
6

Xiong, Jinbiao, Seiichi Koshizuka, and Mikio Sakai. "ICONE19-43282 TURBULENCE MODELING FOR MASS TRANSFER IN SEPARATED AND REATTACHING FLOWS FOR FLOW-ACCELERATED CORROSION." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pohll, G. M., and J. C. Guitjens. "Modeling Regional Flow and Flow to Drains." Journal of Irrigation and Drainage Engineering 120, no. 5 (1994): 925–39. http://dx.doi.org/10.1061/(asce)0733-9437(1994)120:5(925).

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khan, Sarosh I., and Pawan Maini. "Modeling Heterogeneous Traffic Flow." Transportation Research Record: Journal of the Transportation Research Board 1678, no. 1 (1999): 234–41. http://dx.doi.org/10.3141/1678-28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alley, R. B., and I. Joughin. "Modeling Ice-Sheet Flow." Science 336, no. 6081 (2012): 551–52. http://dx.doi.org/10.1126/science.1220530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ninković, Vladimir. "Dynamic migration flow modeling." Security Dialogues /Безбедносни дијалози 1-2 (2017): 149–67. http://dx.doi.org/10.47054/sd171-20149n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bollinger, L. Andrew, Chris Davis, Igor Nikolić, and Gerard P. J. Dijkema. "Modeling Metal Flow Systems." Journal of Industrial Ecology 16, no. 2 (2011): 176–90. http://dx.doi.org/10.1111/j.1530-9290.2011.00413.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Balcerak, Ernie. "Modeling ice stream flow." Eos, Transactions American Geophysical Union 92, no. 49 (2011): 464. http://dx.doi.org/10.1029/2011eo490018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

King, Richard B., Gary M. Raymond, and James B. Bassingthwaighte. "Modeling blood flow heterogeneity." Annals of Biomedical Engineering 24, no. 3 (1996): 352–72. http://dx.doi.org/10.1007/bf02660885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yule, A. J., M. Damou, and D. Kostopoulos. "Modeling confined jet flow." International Journal of Heat and Fluid Flow 14, no. 1 (1993): 10–17. http://dx.doi.org/10.1016/0142-727x(93)90035-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Slimani, Nadia, Ilham Slimani, Nawal Sbiti, and Mustapha Amghar. "Machine Learning and statistic predictive modeling for road traffic flow." International Journal of Traffic and Transportation Management 03, no. 01 (2021): 17–24. http://dx.doi.org/10.5383/jttm.03.01.003.

Full text
Abstract:
Traffic forecasting is a research topic debated by several researchers affiliated to a range of disciplines. It is becoming increasingly important given the growth of motorized vehicles on the one hand, and the scarcity of lands for new transportation infrastructure on the other. Indeed, in the context of smart cities and with the uninterrupted increase of the number of vehicles, road congestion is taking up an important place in research. In this context, the ability to provide highly accurate traffic forecasts is of fundamental importance to manage traffic, especially in the context of smart
APA, Harvard, Vancouver, ISO, and other styles
16

Oussoren, Andrew, Jovica Riznic, and Shripad Revankar. "ICONE23-2115 MODELING CRITICAL FLOW IN CRACK GEOMETRIES USING TRACE." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–2—_ICONE23–2. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-2_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Supa-Amornkul, Savalaxs, Frank R. Steward, and Derek H. Lister. "Modeling Two-Phase Flow in Pipe Bends." Journal of Pressure Vessel Technology 127, no. 2 (2004): 204–9. http://dx.doi.org/10.1115/1.1904063.

Full text
Abstract:
In order to have a better understanding of the interaction between the two-phase steam-water coolant in the outlet feeder pipes of the primary heat transport system of some CANDU reactors and the piping material, themalhydraulic modelling is being performed with a commercial computational fluid dynamics (CFD) code—FLUENT 6.1. The modeling has attempted to describe the results of flow visualization experiments performed in a transparent feeder pipe with air-water mixtures at temperatures below 55°C. The CFD code solves two sets of transport equations—one for each phase. Both phases are first tr
APA, Harvard, Vancouver, ISO, and other styles
18

Rad, Farhad, Midia Reashadi, and Ahmad Khademzadeh. "Flow Control Modeling in WiNoC." Journal of Iranian Association of Electrical and Electronics Engineers 19, no. 2 (2022): 109–19. http://dx.doi.org/10.52547/jiaeee.19.2.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Khudjaev, M., and A. Rakhimov. "Gas flow modeling in wells." Journal of Physics: Conference Series 2131, no. 5 (2021): 052075. http://dx.doi.org/10.1088/1742-6596/2131/5/052075.

Full text
Abstract:
Abstract The topic of research is gas flow modeling in wells. The subject of the study is to determine the dynamic parameters of gas in a gas well, taking into account changes in the ambient temperature and gravity. Mathematical and numerical modeling of gas flow in a gas well is performed; a numerical algorithm to determine gas pressure in a gas well is built. This algorithm allows studying the state of production and injection wells with varying conditions at the wellhead and at the lower end of the well. Research methods are based on the energy equations of the transported gas; the mass con
APA, Harvard, Vancouver, ISO, and other styles
20

Brill, James P. "Modeling Multiphase Flow in Pipes." Way Ahead 06, no. 02 (2010): 16–17. http://dx.doi.org/10.2118/0210-016-twa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wang, Xiaoming, Xiaoyong Li, and Dmitri Loguinov. "Modeling Residual-Geometric Flow Sampling." IEEE/ACM Transactions on Networking 21, no. 4 (2013): 1090–103. http://dx.doi.org/10.1109/tnet.2012.2231435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wei, X., Y. Zhao, Z. Fan, et al. "Lattice-based flow field modeling." IEEE Transactions on Visualization and Computer Graphics 10, no. 6 (2004): 719–29. http://dx.doi.org/10.1109/tvcg.2004.48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Langevin, Christian D. "Modeling Axisymmetric Flow and Transport." Ground Water 46, no. 4 (2008): 579–90. http://dx.doi.org/10.1111/j.1745-6584.2008.00445.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bredehoeft, John. "Modeling Groundwater Flow-The Beginnings." Ground Water 50, no. 3 (2012): 325–29. http://dx.doi.org/10.1111/j.1745-6584.2012.00940.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Caputo, Antonio C., and Pacifico M. Pelagagge. "Flow Modeling in Fabric Filters." Journal of Porous Media 2, no. 2 (1999): 191–204. http://dx.doi.org/10.1615/jpormedia.v2.i2.70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Freeze, Allan. "Modeling groundwater flow and pollution." Canadian Geotechnical Journal 25, no. 4 (1988): 851–52. http://dx.doi.org/10.1139/t88-098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Villaret, C., and A. G. Davies. "Modeling Sediment-Turbulent Flow Interactions." Applied Mechanics Reviews 48, no. 9 (1995): 601–9. http://dx.doi.org/10.1115/1.3023148.

Full text
Abstract:
Models of widely differing complexity have been used in recent years to quantify sediment transport processes for engineering applications. This paper presents a review of these model types, from simple eddy viscosity models involving the “passive scalar hypothesis” for sediment predication, to complex two-phase flow models. The specific points addressed in this review include, for the suspension layer, the bottom boundary conditions, the relationship between the turbulent eddy viscosity and particle diffusivity, the damping of turbulence by vertical gradients in suspended sediment concentrati
APA, Harvard, Vancouver, ISO, and other styles
28

Lagha, M., and P. Manneville. "Modeling transitional plane Couette flow." European Physical Journal B 58, no. 4 (2007): 433–47. http://dx.doi.org/10.1140/epjb/e2007-00243-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Abdullah, Makola M., Kenneth K. Walsh, Shannon Grady, and G. Dale Wesson. "Modeling Flow around Bluff Bodies." Journal of Computing in Civil Engineering 19, no. 1 (2005): 104–7. http://dx.doi.org/10.1061/(asce)0887-3801(2005)19:1(104).

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Long, J., and P. Chen. "MODELING OF CONCENTRATED SUSPENSION FLOW." Transactions of the Canadian Society for Mechanical Engineering 24, no. 1B (2000): 151–67. http://dx.doi.org/10.1139/tcsme-2000-0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Abbott, M. B. "Range of Tidal Flow Modeling." Journal of Hydraulic Engineering 123, no. 4 (1997): 257–77. http://dx.doi.org/10.1061/(asce)0733-9429(1997)123:4(257).

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Molenaar, J., and R. J. Koopmans. "Modeling polymer melt‐flow instabilities." Journal of Rheology 38, no. 1 (1994): 99–109. http://dx.doi.org/10.1122/1.550603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Combinido, Jay Samuel L., and May T. Lim. "Modeling U-turn traffic flow." Physica A: Statistical Mechanics and its Applications 389, no. 17 (2010): 3640–47. http://dx.doi.org/10.1016/j.physa.2010.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Verdier, Claude, Cécile Couzon, Alain Duperray, and Pushpendra Singh. "Modeling cell interactions under flow." Journal of Mathematical Biology 58, no. 1-2 (2008): 235–59. http://dx.doi.org/10.1007/s00285-008-0164-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Greenspan, D. "Quasimolecular modeling of cavity flow." Computers & Mathematics with Applications 14, no. 4 (1987): 239–48. http://dx.doi.org/10.1016/0898-1221(87)90131-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sopasakis, A. "Unstable flow theory and modeling,." Mathematical and Computer Modelling 35, no. 5-6 (2002): 623–41. http://dx.doi.org/10.1016/s0895-7177(01)00186-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sopasakis, A. "Unstable flow theory and modeling." Mathematical and Computer Modelling 35, no. 5-6 (2002): 623–41. http://dx.doi.org/10.1016/s0895-7177(02)80025-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hutter, K., B. Svendsen, and D. Rickenmann. "Debris flow modeling: A review." Continuum Mechanics and Thermodynamics 8, no. 1 (1994): 1–35. http://dx.doi.org/10.1007/bf01175749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Konikow, Leonard F., and James W. Mercer. "Groundwater flow and transport modeling." Journal of Hydrology 100, no. 1-3 (1988): 379–409. http://dx.doi.org/10.1016/0022-1694(88)90193-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pandit, Ashok, and Jean M. Abi Aoun. "Numerical Modeling of Axisymmetric Flow." Ground Water 32, no. 3 (1994): 458–64. http://dx.doi.org/10.1111/j.1745-6584.1994.tb00663.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Konikow, Leonard F. "Modeling Groundwater Flow and Pollution." Eos, Transactions American Geophysical Union 69, no. 45 (1988): 1557. http://dx.doi.org/10.1029/88eo01182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Patzák, B., and Z. Bittnar. "Modeling of fresh concrete flow." Computers & Structures 87, no. 15-16 (2009): 962–69. http://dx.doi.org/10.1016/j.compstruc.2008.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Park, Chul Woong, Jaeman Park, Naree Kim, and Youngchul Kim. "Modeling water flow on Façade." Automation in Construction 93 (September 2018): 265–79. http://dx.doi.org/10.1016/j.autcon.2018.05.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kemper, Benjamin, Jeroen de Mast, and Michel Mandjes. "Modeling process flow using diagrams." Quality and Reliability Engineering International 26, no. 4 (2009): 341–49. http://dx.doi.org/10.1002/qre.1061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Miller, Andrzej, Krzysztof Badyda, Jaroslaw Dyjas, and Karol Miller. "Modeling of flow system dynamics." Journal of Thermal Science 13, no. 1 (2004): 56–61. http://dx.doi.org/10.1007/s11630-004-0009-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gibson, M. M. "Turbulence measurements and flow modeling." International Journal of Heat and Fluid Flow 8, no. 4 (1987): 339. http://dx.doi.org/10.1016/0142-727x(87)90078-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Andersson, H. I., and B. A. Pettersson. "Modeling plane turbulent Couette flow." International Journal of Heat and Fluid Flow 15, no. 6 (1994): 447–55. http://dx.doi.org/10.1016/0142-727x(94)90003-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Yanlin, Bingde Chen, Yanping Huang, and Junfeng Wang. "ICONE19-43704 Modeling on Bubbly to Churn Flow Pattern Transition for Vertical Upward Flows in Narrow Rectangular Channel." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kumar Upadhyay, Ashutosh. "Dynamic Modeling of Blood Flow and Pressure in the Cardiovascular System." International Journal of Science and Research (IJSR) 13, no. 5 (2024): 1192–99. http://dx.doi.org/10.21275/sr24518032944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

V R Nandigana, Vishal. "Analytical Modeling of Electroosmotic and Ion Transport Flow in Nanofluidic Channels." International Journal of Science and Research (IJSR) 10, no. 5 (2021): 1194–98. https://doi.org/10.21275/sr21526190405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!