To see the other types of publications on this topic, follow the link: Flow of mortar.

Dissertations / Theses on the topic 'Flow of mortar'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 dissertations / theses for your research on the topic 'Flow of mortar.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Stiles, James M. "The numerical simulation of the flow of an injected grout in underground room and pillar coal mines." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1120.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 1999.<br>Title from document title page. Document formatted into pages; contains vii, 145 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 71-72).
APA, Harvard, Vancouver, ISO, and other styles
2

Kudo, Elisabete Kioko. "Caracterização reológica de argamassas colantes." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3146/tde-16072013-163235/.

Full text
Abstract:
As argamassas colantes são produtos constituídos por areia natural ou artificial, ligantes e aditivos químicos que cumprem uma função de adesivo para assentamento de revestimentos em pisos e paredes. Sob o ponto de vista reológico, a argamassa colante é um material multifásico formado por uma pasta que envolve agregados minerais. Atualmente, o único teste preconizado em norma a fresco é o ensaio de deslizamento, que apesar de ter baixo custo e relativa facilidade de execução em laboratório. As grandes desvantagens desse método são: imprecisão e a baixa repetibilidade, além de ser insuficiente para efetuar uma avaliação mais completa desses produtos no estado fresco. Assim, técnicas de caracterização reológica (Squeeze Flow, Pull Out Flow e reometria rotacional) foram especificadas e aplicadas, como alternativa tecnológica para avaliação de argamassas colantes. Porém, o potencial da configuração tradicional do ensaio de Squeeze Flow e a reometria rotacional foram pouco explorados neste tipo de argamassa. Neste estudo foi necessário empreender ajustes de configuração. O objetivo desta dissertação foi o de aplicar métodos de caracterização reológica em argamassas colantes de mercado (ACI e ACIII) de certo fabricante e ACI formulada em laboratório composta por areias com morfologias diferentes que permitissem identificar suas características relevantes no estado fresco, avaliar a influência dos parâmetros experimentais do método de Squeeze Flow (principalmente em relação à configuração e parâmetros), avaliar a adesividade das argamassas no estado fresco e aplicar o método de reometria rotacional para avaliação das energias de mistura e reológica. Os experimentos para avaliação das configurações e parâmetros do ensaio de Squeeze Flow e Pull Out Flow mostraram que tais métodos foram sensíveis para diferenciar as argamassas e refletiram o que, na prática, é percebido: ACIII (Argamassa Colante do Tipo III) tem maior consistência que ACI (Argamassa 7 Colante do Tipo I), além de mostrar que são sensíveis às diferentes taxas de deslocamento, teores de água e morfologia de agregados. Já a reometria rotacional mostrou-se sensível para identificar e diferenciar a cinética de mistura das argamassas colantes ACI e ACIII. Os resultados indicaram que o tempo de mistura de 150 segundos foi eficiente e suficiente para homogeneizar e estabilizar as argamassas testadas, e que a argamassa do tipo ACI apresenta maior dificuldade de mistura e resulta em uma suspensão com maior viscosidade e tensão de escoamento do que a argamassa ACIII. Por fim, a aplicação dos métodos de caracterização reológica em argamassas ACI compostas por areias com morfologias diferentes, indicou que o método de Squeeze Flow mostrou ser sensível para diferentes teores de água, em argamassas compostas por areia artificial. As curvas de carga de compressão da argamassa ACI com areia artificial mostraram serem superiores às formuladas argamassas com areia natural, indicando que, com a mesma proporção de insumos e teor de água (volume), as argamassas não possuem perfis reológicos similares.<br>Adhesive mortars are products constituted of natural or artificial sand, binder (cement) and chemical additives which serve as an adhesive for laying floor and wall tiles. From the rheological point of view, the adhesive mortar is a multiphase material consisting of a paste that coats mineral aggregates. Currently, the only test done is the slip test, which has low cost and has a relatively easy execution. The disadvantage of this method is not to have a good repeatability and is not sufficient to evaluate products in fresh state. Thus, techniques of rheologic characterization (flow squeeze, pull out flow and rotational rheometry) were applied as technologic alternatives for evaluation of adhesive mortars. However, the potential of the traditional configuration of the Squeeze Flow test and rotational rheometry were not explored in this type of product due to the requirement of configuration settings. The purpose of this dissertation is to apply advanced methods for rheological characterization of adhesive mortars in order to identify important characteristics of fresh-state application; evaluation of the influence of the squeeze-flow experimental method (mainly due to configuration and parameters); applied rheometry techniques to evaluate the mixing energy; and to evaluate the adhesiveness of fresh mortars. The evaluation of the configuration and parameters of the Squeeze Flow and Pull Out Flow showed that the methods were sensible enough to differentiate mortars in the same way that is perceived in practice: ACIII has greater consistency than ACI, also shows that are sensitive to different rates of displacement, water content and morphology of aggregates. The mixing and rotational rheometry showed that the method is sensitive to identify and differentiate the kinetics of mixing for ACI and ACIII mortars. The results indicate that the mixing time of 150 seconds was effective to homogenize and disperse the mortars. The mixing and flow torque values are higher for ACI than for ACIII, indicating that ACI is more difficult to be mixed and has a higher viscosity and yield stress than ACIII.
APA, Harvard, Vancouver, ISO, and other styles
3

Oliveira, Marcelo de Jesus Dias de. "AVALIAÇÃO DO TEMPO DE CONSOLIDAÇÃO DE ARGAMASSAS COLANTES ATRAVÉS DE MÉTODOS REOLÓGICOS." Universidade Federal de Santa Maria, 2015. http://repositorio.ufsm.br/handle/1/7888.

Full text
Abstract:
The consolidation time is the time available for the application of adhesive mortar on the substrate. The NBR 14081-1 does not specify a method of test to determining the consolidation time, however, the standard of enforcement procedures of covering floors and walls with ceramic tiles (NBR 13755 and NBR 13754) establish 2 h and 30 min as the minimum time. By considering the significant differences between the formulations, the presence of polymeric additives, besides the evolution of cement and additions, a study about how and when the consolidation of adhesive mortar happens is needed. Then, it was looked for to evaluate and determine the time of consolidation of adhesive mortars of the types ACI, ACII and ACIII by Squeeze flow and Pull out flow tests in different time intervals (30, 60, 120, 180, 240 and 300 min) in fresh state. The test methods shown to be sensitive for the determination of consolidation time of adhesive mortars, indicating the increase of the viscosity and of the adhesion of the mortar over time. For mortars in which the consolidation occurred during the time period studied, this time made up to 180 minutes after mixing. From this period the adhesive mortars suffered losses in their rheological characteristics, which would cause difficulties in the settlement stages of ceramic plates and later problems in its performance and durability. On the other hand, the tensile bond strength tests showed great variability imparing a correlation with the rheological tests.<br>O tempo de consolidação é o período disponível para a aplicação da argamassa colante no substrato. A NBR 14081-1 não especifica um método de ensaio para a determinação do tempo de consolidação, já as normas de procedimento de execução de revestimento de pisos e paredes com placas cerâmicas (NBR 13755 e NBR 13754) estabelecem 2 h e 30 min como tempo mínimo. Considerando as diferenças significativas entre as formulações, a presença de aditivos poliméricos, além da evolução dos cimentos e das adições, faz-se necessário um estudo sobre como e quando se dá a consolidação da argamassa colante. Em virtude disso, procurou-se avaliar e determinar o tempo de consolidação das argamassas colantes dos tipos ACI, ACII e ACIII por meio dos ensaios de Squeeze flow e Pull out flow, em diferentes intervalos de tempo (30, 60, 120, 180, 240 e 300 min) no estado fresco. Os métodos de ensaio mostraram-se sensíveis para a determinação do tempo de consolidação das argamassas colantes, indicando o aumento da viscosidade e da adesão da argamassa com o passar do tempo. Para as argamassas em que o tempo de consolidação ocorreu durante o período estudado, este tempo deu-se aos 180 minutos após a mistura. A partir deste período as argamassas colantes sofreram perdas nas suas características reológicas o que poderá causar dificuldades nas etapas de assentamento das placas cerâmicas e posteriormente, problemas no seu desempenho e durabilidade. Já os ensaios de resistência de aderência à tração apresentaram grande variabilidade prejudicando uma correlação com os ensaios reológicos.
APA, Harvard, Vancouver, ISO, and other styles
4

Costa, Marienne do Rocio de Mello Maron da. "Análise comparativa de argamassas colantes de mercado através de parâmetros reológicos." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3146/tde-22032006-133844/.

Full text
Abstract:
O presente trabalho propõe o entendimento do comportamento no estado fresco de argamassas colantes, com base na caracterização reológica e físico-química de diferentes composições comerciais, servindo de base para analisar o fenômeno de deslizamento, a partir do ensaio estabelecido na norma brasileira. Para isso, foi utilizado o ensaio “Squeeze flow” (escoamento por compressão axial), empregado na caracterização de argamassas de revestimento no laboratório de microestrutura do CPqDCC da EPUSP, como ferramenta de análise do comportamento de argamassas colantes. Neste ensaio, o escoamento do material decorre da aplicação de uma carga de compressão sobre a amostra no estado fresco, a qual ocasiona deslocamentos no seu interior devido a esforços de cisalhamento radiais originados durante o fluxo. O critério de seleção das argamassas colantes comerciais (tipo AC-I) se baseou nos resultados do ensaio de deslizamento, escolhendo-se duas com resultado muito abaixo do limite especificado, duas com resultado próximo do limite e outras duas com resultado acima do mesmo. A composição química e física foi caracterizada com o objetivo de embasar a análise dos resultados obtidos no “Squeeze flow”. A separação da fração fina das argamassas na peneira no.200 contribuiu para o conhecimento da viscosidade da pasta e da sua influência no comportamento reológico das argamassas. Foi observado que as argamassas estudadas apresentam diferenças de composição físico-química e de comportamento reológico. As diferenças de comportamento reológico das argamassas decorrem, provavelmente, de ação sinérgica de alguns parâmetros da composição, com destaque para a distribuição granulométrica. O “Squeeze flow” mostrou-se uma ferramenta adequada na caracterização das argamassas colantes e contribuiu para explicar o deslizamento estabelecido na norma brasileira, pela proposição de modelos hipotéticos de comportamento.<br>Present thesis proposes the study of plastic-state behaviour of dry-set mortars based on the rheological and physicochemical characterization of different commercially available dry-set mortar compositions. Such characterization served as basis for the analysis of dry-set mortar slip phenomena using the tests recommended by brazilian standards (NBR). The Squeeze Flow test (slip by axial compression) originally used for coating mortars characterization by the EPUSP CPqDDC Microstructure Laboratory was adopted as a test tool for analysing the dry-set mortar behaviour. In the mentioned test the material slip is obtained by compressing the sample in its plastic state which caused internal displacements due to radial shearing tensions originated during the mentioned slip. The dry-se mortars (all of them AC-I type) used in the study were selected based in the slip tests results against brazilian standards specified limits resulting in the selection of two dry-set mortars below the specified limit, two dry-set mortars close to the specified limit and dry-set mortars above the specified limit. Chemical and physical compositions were characterized in order to serve as basis for Squeeze Flow results analysis. Fine fraction segregation, using number 200 sieve contributed to understanding of plastic-state mortar viscosity and its influence in mortar rheological behaviour. It was observed diverse physicochemical and rheological behaviour among the studied dry-set mortars. The rheological behaviour diversity of dry-set mortars were due to the synergy among some composition parameters, specially the granular distribution. The Squeeze Flow was considered a suitable tool for the characterization of dry-set mortars and contributed to develop hypotetical behaviour models that allowed to explain the slip as stated by brazilian standards.
APA, Harvard, Vancouver, ISO, and other styles
5

Silva, Walney Gomes da. "Estudo da introdu??o de res?duo de britagem de rocha calc?ria e cinza de biomassa de cana-de-a??car em formula??es de argamassas colantes." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15611.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:57:59Z (GMT). No. of bitstreams: 1 WalneyGS_TESE.pdf: 2269904 bytes, checksum: 6e832698b2804a3e69b2353dde562cad (MD5) Previous issue date: 2014-12-30<br>The adhesive mortars are a mixture of cement, sand, and additives to polymers that retain the mixing water and promotes adherence, being used in setting on various ceramic substrates. The sand used in the production of these mortars is from the riverbeds, and with the increasing restriction of these sands extraction by environmental agencies, and often having to be transported over long distances to the consumer center. This work aims to design and physical and mechanical characterization of ecological adhesive mortar with total replacement of natural sand by sand from the crushing of limestone, and the addition of mineral ash biomass of cane sugar in partial replacement cement used in the production of adhesive mortar , aiming compositions that meet the regulatory specifications for use adhesive mortar. Standardized tests to determine the tensile bond strength (NBR 14081-4), determination of open time (NBR 14081-3) and determination of slip (NBR 14081-5) were performed. Were also conducted trials squeeze flow in different formulation, the mortar with addition of 15 % gray biomass of cane sugar for cement mortars as well as the total replacement of natural sand by sand limestone crushing, got the best performance among the mortars studied, it was found that the addition of biomass to replace cement is perfectly feasible due to its pozzolanic activity, which contributed to this reduction in the cement matrix formation of adhesive mortar<br>As argamassas colantes s?o a mistura de cimento e areia, aditivadas com pol?meros que ret?m ?gua de amassamento e promovem a ader?ncia, sendo utilizadas na fixa??o da cer?mica sobre diversos substratos. A areia utilizada na produ??o dessas argamassas, proveniente dos leitos dos rios, tem sua extra??o submetida ? restri??o cada vez maior por parte dos ?rg?os ambientais e, muitas vezes, precisa ser transportada a grandes dist?ncias at? chegar ao centro consumidor. Este trabalho tem por objetivo a formula??o e a caracteriza??o f?sica e mec?nica de argamassa colante ecol?gica com a substitui??o total da areia natural por areia proveniente de britagem de rocha calc?ria, bem como com a adi??o mineral de cinza de biomassa de cana-de-a??car em substitui??o parcial do cimento utilizado na produ??o das argamassas colantes, visando composi??es que atendam ?s especifica??es normativas de utiliza??o de argamassa colante. Foram realizados ensaios normatizados de determina??o da resist?ncia de ader?ncia ? tra??o (NBR 14.081-4), determina??o do tempo em aberto (NBR 14.081-3) e determina??o do deslizamento (NBR 14.081-5). Foram realizados, ainda, ensaios de squeeze flow nas diferentes formula??es. A argamassa com adi??o de 15% de cinza de biomassa de cana-de-a??car em substitui??o ao cimento, bem como a substitui??o total da areia natural por areia de britagem calc?ria, obteve o melhor desempenho entre as argamassas estudadas. Foi verificado que a adi??o de biomassa em substitui??o ao cimento ? perfeitamente vi?vel, devido a sua atividade pozol?nica, que contribuiu para essa redu??o de cimento na matriz de forma??o da argamassa colante
APA, Harvard, Vancouver, ISO, and other styles
6

Christianto, Heru Ari. "Effect Of Chemical And Mineral Admixtures On The Fresh Properties Of Self Compacting Mortars." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605322/index.pdf.

Full text
Abstract:
Fresh properties of mortars are important factors in altering the performance of self compacting concrete (SCC). Measurement of the rheological properties of the fine mortar part of concrete is generally used in the mix design of SCC. It can be stated that SCC rheology can be optimized if the fine mortar part of concrete is designed properly. However, measurement of the rheological properties is often impractical due to the need for complex equipment. Therefore, more practical methods of assessing mortar workability are often preferred. In this study, four mineral admixtures, three superplasticizers (SP) and two viscosity modifying admixtures (VMA) were used to prepare self compacting mortar (SCM). The mineral admixtures included fly-ash, brick powder, limestone powder, and kaolinite. Two of the SPs were polycarboxylate based and another one was melamine formaldehyde based. One of the viscosity modifying admixtures was based on an aqueous dispersion of microscopic silica and the other one was based on high molecular weight hydroxylated polymer. Within the scope of the experimental program, 43 mixes of SCM were prepared from different materials with keeping the amount of mixing water constant. Workability of the fresh mortar were determined using V - funnel and slump flow tests. The setting time of the mortars, were also determined. The hardened properties that were determined included the ultrasonic pulse velocity (UPV) and the strength which was determined at 7, 28, and 56 days. It was concluded that among the mineral admixtures used, only fly-ash and limestone powder increased the workability of the mixes. The two polycarboxylate based SPs yield approximately the same workability and the melamine formaldehyde based SP was not as effective as the other two.
APA, Harvard, Vancouver, ISO, and other styles
7

Nguyen, Thi Bich Hau. "Valorisation du verre dans le béton : étude expérimentale du comportement de pâte de ciment et du mortier : rhéologie, mécanique et durabilité." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4793/document.

Full text
Abstract:
Cette étude concerne l’ajout de billes de verre de dimension variant de 1 à 50 m dans des matrices cimentaires. Les travaux ont comme objectif dans un premier temps la caractérisation des propriétés physiques et rhéologiques à l’état frais des suspensions cimentaires à deux échelles : la pâte de ciment et le mortier. Puis dans un deuxième temps l’étude de l’influence des microbilles de verre sur les propriétés physiques, mécaniques et durabilité du mortier durci. Des séries d’expériences normalisées ont été faites pour caractériser l’influence des billes de verre sur les indicateurs à l’état frais : la consistance et la prise des pâtes de ciment. Les propriétés mécaniques et de durabilité sont quantifiées au jeune âge (de 3 à 28 jours) et à long terme (de 28 jours à 112 jours). L’étude sur les gels d’hydratation et sur la microstructure du mortier durci a été faite à l’aide de la technique de la microscopie électronique à balayage. Des méthodes de caractérisation complémentaires pour examiner la propagation d’onde, la ségrégation et l’étalement ont également été employées. Les résultats obtenus par l’ensemble des essais évaluent le rôle des microbilles de verre sur les comportements des suspensions de pâtes de ciment et du mortier à l’état frais, et du mortier à l’état durci. Ceci met en évidence l’intérêt rhéologique, mécanique et l’effet sur la durabilité des microbilles de verre dans un matériau cimentaire<br>The aim of this work is the valorisation of recycled waste materials in cement paste and mortar in order to reuse these resources for replacing natural aggregates in concrete. Our study concerns the use of a microsphere glass powder (MGP) with a particle size from 1 to 50 m into the cement matrix. This experimental work first focuses on the effect of the MGP on the workability properties of fresh cement paste and fresh mortar and on the physical, mechanical and durability properties of mortar. Many standard tests have been conducted for the characterisation of the behavior of the fresh cement paste i.e the consistency and the setting of fresh cement paste. The durability properties at early age (from 3 to 28 days) and at long time (from 28 days to 112 days) have been also quantified. We employed the scanning electron microscopy for the mortar microstructure analysis. Some supplementary tests like the ultrasonic wave propagation, the segregation and the flow properties on the vibrated table have been also used. The primary results have proved the effect of the MGP on the behaviour of the fresh cement paste, fresh mortar and mortar. The presence of MGP showed interesting modifications on the rheology, mechanical and durability properties of the cement system
APA, Harvard, Vancouver, ISO, and other styles
8

Valenciano, Rubio Jose L. "Adaptive spectral element methods for swirling Newtonian flows." Thesis, Edinburgh Napier University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ngachin, Merlin. "Simulation of Rising Bubbles Dynamics Using the Lattice Boltzmann Method." FIU Digital Commons, 2011. http://digitalcommons.fiu.edu/etd/466.

Full text
Abstract:
The main purpose of this thesis was to propose and test a new approach that captures the features of single and multiple bubbles dynamics using the Shan and Chen-type lattice Boltzmann method (LBM). Two dimensional bubbles motions were simulated considering the buoyancy effect for which the topology of the bubble is characterized by the Eötvös (Eo), and Morton (M) numbers. A qualitative and quantitative validation were performed using the Level set method. Bubble shape deformation was captured and analysis based on terminal Reynolds number and degree of circularity show very good agreement with the experimental results and with available simulation results. In sum, this study presents crucial preliminary information to further analyze multiphase fluid flows in various contexts.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Yi-chung, and 陳奕仲. "Effect of Air Flow Graded Ash on Mortar." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/89655604548963162265.

Full text
Abstract:
碩士<br>國立雲林科技大學<br>營建工程系碩士班<br>100<br>Fly ash is a very common admixture for concrete or mortar. Many cases show that adding fly ash can reduce cracks. This study is to find out the real reason why ash can reduce crack. There are two possibilities. The first is that ash improves workability, reduces water use and ends up with less shrinkage and cracks. The second is that some ingredient in ash expands during the setting that compensates the setting shrinkage. Fly ash is a mixture of several different material having different properties. This study grades ash into different groups by air flow and test them separately to evaluate their effect to mortar and also test the effect with and without same water ratio. The studied properties effected by ash including setting time, strength, setting shrinkage, etc.. Measuring setting shrinkage is not an easy task because of the softness of the tested material. A test is designed to measure setting shrinkage of mortar, which is similar to ASTM C827M-10 but much easier.
APA, Harvard, Vancouver, ISO, and other styles
11

Yang, Keun-Hyeok, J.-K. Song, K.-S. Lee, and Ashraf F. Ashour. "Flow and Compressive Strength of Alkali-Activated Mortars." 2009. http://hdl.handle.net/10454/7741.

Full text
Abstract:
yes<br>Test results of thirty six ground granulated blast-furnace slag (GGBS)-based mortars and eighteen fly ash (FA)-based mortars activated by sodium silicate and/or sodium hydroxide powders are presented. The main variables investigated were the mixing ratio of sodium oxide (Na2O) of the activators to source materials, water-to-binder ratio, and fine aggregate-to-binder ratio. Test results showed that GGBS based alkali-activated (AA) mortars exhibited much higher compressive strength but slightly less flow than FA based AA mortars for the same mixing condition. Feed-forward neural networks and simplified equations developed from nonlinear multiple regression analysis were proposed to evaluate the initial flow and 28-day compressive strength of AA mortars. The training and testing of neural networks, and calibration of the simplified equations were achieved using a comprehensive database of 82 test results of mortars activated by sodium silicate and sodium hydroxide powders. Compressive strength development of GGBS-based alkali-activated mortars was also estimated using the formula specified in ACI 209 calibrated against the collected database. Predictions obtained from the trained neural network or developed simplified equations were in good agreement with test results, though early strength of GGBS-based alkali-activated mortars was slightly overestimated by the proposed simplified equations.
APA, Harvard, Vancouver, ISO, and other styles
12

Xiao, Hailong. "Multiscale mortar mixed finite element methods for flow problems in highly heterogeneous porous media." Thesis, 2013. http://hdl.handle.net/2152/23317.

Full text
Abstract:
We use Darcy's law and conservation of mass to model the flow of a fluid through a porous medium. It is a second order elliptic system with a heterogeneous coefficient. We consider the equations written in mixed form. In the heterogeneous case, we define a new multiscale mortar space that incorporates purely local information from homogenization theory to better approximate the solution along the interfaces with just a few degrees of freedom. In the case of a locally periodic heterogeneous coefficient of period epsilon, we prove that the new method achieves both optimal order error estimates in the discretization parameters and good approximation when epsilon is small. Moreover, we present numerical examples to assess its performance when the coefficient is not obviously locally periodic. We show that the new mortar method works well, and better than polynomial mortar spaces. On the other hand, we also propose to use multiscale mortars as a coarse component to construct a two-level preconditioner for the saddle point linear system arising from the fine scale discretization of the mixed finite element system. The two-level preconditioners are constructed based on the interfaces. We propose a framework to define the interpolation operators for the face based two-level preconditioners for different combination of coarse and fine scale mortar spaces for matching and nonmatching grids. In this dissertation, we show that for quasi-homogeneous problems and matching grids, the condition number of the preconditioned interface operator is bounded by (log(H/h))², which is the same as the traditional two-level preconditioners, for quasi-homogeneous problems. We show several numerical examples to demonstrate that for the strongly heterogeneous porous media, it is often desirable and even necessary to use a higher dimensional coarse mortar space to construct the coarse preconditioner to achieve convergence. We apply our ideas to study slightly compressible single phase and two-phase flow in a porous medium. We find that for the nonlinear single phase problem, the two-level preconditioners could be successfully applied to the symmetrized linear system. For the two-phase problem, using the fine scale, instead of multiscale, velocity solutions from the flow problem can greatly benefit the transport problem.<br>text
APA, Harvard, Vancouver, ISO, and other styles
13

Wei, Shao Yuan, and 邵元蔚. "How experiential value affects flow – Study based on online and brick and mortar bookstores." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/kftn3x.

Full text
Abstract:
碩士<br>國立勤益科技大學<br>企業管理系<br>105<br>As the income level has increased steadily over the past decades, consumers have started to show tendency to purchase things, not they need, but they desire. In order to attract customers and raise their willingness to buy, business owners focus on product appeals and create a shopping environment that provides entertainment and intrinsic enjoyment, experiential shopping has then emerged. Besides that, with the advancement of informational technology, people are able to start their businesses online at a lower cost, anytime, anywhere, resulting in more competition among retailers. Price comparability and home delivery provides time efficiency and great convenience causing consumers to turn to online shopping, further threatening the survival of brick and mortar stores. This study examined six experiential values to find out which can successfully enhance patronage intention, then further investigate whether patrons have gone into flow based on their experience. Also if the experiential values stimulate repurchase intention and positive word-of-mouth. The study surveyed consumers repurchase at bookstores and used Amos to conduct Structural Equation Model analysis, in order to understand the relationship between different aspects. Lastly, using Chi-square difference test to investigate experiential differences between the two channels. The result shows all six experiential values have significant impact on flow and affect repurchase intention. Chi-square difference test reveals that the significant difference between online shopping and the other is aesthetics and service excellence; the rest show no difference between the two channels. This study can provide a conceptual framework for bookstore owners in different channels to self-reflect if they are lacking any experiential values, improve customers’ shopping experience in order to increase their loyalty which shall then boost the business.
APA, Harvard, Vancouver, ISO, and other styles
14

HSIAO, YU-LUN, and 蕭育侖. "A study of applying the Slag of Baosteel slag short flow to engineering properties of composite cement mortar." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/js6tjj.

Full text
Abstract:
碩士<br>國立高雄應用科技大學<br>土木工程與防災科技研究所<br>104<br>With the changing times and economic development, increasing demand for steel, and the steel-making process is accompanied by industrial waste, and can effectively dispose of in order to reduce carbon dioxide emissions, making it a renewable green building materials thus achieving environmental benefits. This study uses three water binder ratio (0.45,0.5,0.55), the Slag of Baosteel Slag Short Flow (SB) by different proportions (0%, 25%, 50%, 75%, 100%) to replace sand and slag portion fixed to replace 20% cement, mix made of composite cement mortar and fresh test(Slump flow、Setting time test), at age 3,7,28,56 and 91 days of hard solid test(Compressive strength、Ultrasonic pulse velocity、Thermal conductivity test), durability test(The resistance value、Auto clave and microwave catalytic、weight loss、high temperature catalytic test). The results showed that composite cement mortar Slump flow will increase by the amount of SB substituted and Water binder ratio rises, the amount of each substituted group were higher than the control (1.01 to 1.09 times); Setting time along with Water binder ratio increased and extended. Compressive strength and ultrasonic velocity increases both the amount of the increase SB substitution;Thermal conductivity due to the substitution of the SB rise reduced from 0.65 to 0.92 times; The resistance value due to an increased amount of substitution of SB rise 1.02 to 1.58 times, and the resistance value with the increase of the Water binder ratio but lower;Auto clave and microwave catalytic test amount of expansion of both will increase the amount of the SB substituted rise, because SB contains free lime (f-CaO), after the reaction with water will swell behavior;weight loss in water binder ratio is 0.45 when substitution SB amounted to 100% of the minimum 1.13%, representing the best of its durability;high temperature catalytic amount of expansion increases the number of days which followed increases.
APA, Harvard, Vancouver, ISO, and other styles
15

Thomas, Sunil George. "On some problems in the simulation of flow and transport through porous media." 2009. http://hdl.handle.net/2152/6575.

Full text
Abstract:
The dynamic solution of multiphase flow through porous media is of special interest to several fields of science and engineering, such as petroleum, geology and geophysics, bio-medical, civil and environmental, chemical engineering and many other disciplines. A natural application is the modeling of the flow of two immiscible fluids (phases) in a reservoir. Others, that are broadly based and considered in this work include the hydrodynamic dispersion (as in reactive transport) of a solute or tracer chemical through a fluid phase. Reservoir properties like permeability and porosity greatly influence the flow of these phases. Often, these vary across several orders of magnitude and can be discontinuous functions. Furthermore, they are generally not known to a desired level of accuracy or detail and special inverse problems need to be solved in order to obtain their estimates. Based on the physics dominating a given sub-region of the porous medium, numerical solutions to such flow problems may require different discretization schemes or different governing equations in adjacent regions. The need to couple solutions to such schemes gives rise to challenging domain decomposition problems. Finally, on an application level, present day environment concerns have resulted in a widespread increase in CO₂capture and storage experiments across the globe. This presents a huge modeling challenge for the future. This research work is divided into sections that aim to study various inter-connected problems that are of significance in sub-surface porous media applications. The first section studies an application of mortar (as well as nonmortar, i.e., enhanced velocity) mixed finite element methods (MMFEM and EV-MFEM) to problems in porous media flow. The mortar spaces are first used to develop a multiscale approach for parabolic problems in porous media applications. The implementation of the mortar mixed method is presented for two-phase immiscible flow and some a priori error estimates are then derived for the case of slightly compressible single-phase Darcy flow. Following this, the problem of modeling flow coupled to reactive transport is studied. Applications of such problems include modeling bio-remediation of oil spills and other subsurface hazardous wastes, angiogenesis in the transition of tumors from a dormant to a malignant state, contaminant transport in groundwater flow and acid injection around well bores to increase the permeability of the surrounding rock. Several numerical results are presented that demonstrate the efficiency of the method when compared to traditional approaches. The section following this examines (non-mortar) enhanced velocity finite element methods for solving multiphase flow coupled to species transport on non-matching multiblock grids. The results from this section indicate that this is the recommended method of choice for such problems. Next, a mortar finite element method is formulated and implemented that extends the scope of the classical mortar mixed finite element method developed by Arbogast et al [12] for elliptic problems and Girault et al [62] for coupling different numerical discretization schemes. Some significant areas of application include the coupling of pore-scale network models with the classical continuum models for steady single-phase Darcy flow as well as the coupling of different numerical methods such as discontinuous Galerkin and mixed finite element methods in different sub-domains for the case of single phase flow [21, 109]. These hold promise for applications where a high level of detail and accuracy is desired in one part of the domain (often associated with very small length scales as in pore-scale network models) and a much lower level of detail at other parts of the domain (at much larger length scales). Examples include modeling of the flow around well bores or through faulted reservoirs. The next section presents a parallel stochastic approximation method [68, 76] applied to inverse modeling and gives several promising results that address the problem of uncertainty associated with the parameters governing multiphase flow partial differential equations. For example, medium properties such as absolute permeability and porosity greatly influence the flow behavior, but are rarely known to even a reasonable level of accuracy and are very often upscaled to large areas or volumes based on seismic measurements at discrete points. The results in this section show that by using a few measurements of the primary unknowns in multiphase flow such as fluid pressures and concentrations as well as well-log data, one can define an objective function of the medium properties to be determined, which is then minimized to determine the properties using (as in this case) a stochastic analog of Newton’s method. The last section is devoted to a significant and current application area. It presents a parallel and efficient iteratively coupled implicit pressure, explicit concentration formulation (IMPEC) [52–54] for non-isothermal compositional flow problems. The goal is to perform predictive modeling simulations for CO₂sequestration experiments. While the sections presented in this work cover a broad range of topics they are actually tied to each other and serve to achieve the unifying, ultimate goal of developing a complete and robust reservoir simulator. The major results of this work, particularly in the application of MMFEM and EV-MFEM to multiphysics couplings of multiphase flow and transport as well as in the modeling of EOS non-isothermal compositional flow applied to CO₂sequestration, suggest that multiblock/multimodel methods applied in a robust parallel computational framework is invaluable when attempting to solve problems as described in Chapter 7. As an example, one may consider a closed loop control system for managing oil production or CO₂sequestration experiments in huge formations (the “instrumented oil field”). Most of the computationally costly activity occurs around a few wells. Thus one has to be able to seamlessly connect the above components while running many forward simulations on parallel clusters in a multiblock and multimodel setting where most domains employ an isothermal single-phase flow model except a few around well bores that employ, say, a non-isothermal compositional model. Simultaneously, cheap and efficient stochastic methods as in Chapter 8, may be used to generate history matches of well and/or sensor-measured solution data, to arrive at better estimates of the medium properties on the fly. This is obviously beyond the scope of the current work but represents the over-arching goal of this research.<br>text
APA, Harvard, Vancouver, ISO, and other styles
16

Mehmani, Yashar. "Modeling single-phase flow and solute transport across scales." Thesis, 2014. http://hdl.handle.net/2152/28475.

Full text
Abstract:
Flow and transport phenomena in the subsurface often span a wide range of length (nanometers to kilometers) and time (nanoseconds to years) scales, and frequently arise in applications of CO₂ sequestration, pollutant transport, and near-well acid stimulation. Reliable field-scale predictions depend on our predictive capacity at each individual scale as well as our ability to accurately propagate information across scales. Pore-scale modeling (coupled with experiments) has assumed an important role in improving our fundamental understanding at the small scale, and is frequently used to inform/guide modeling efforts at larger scales. Among the various methods, there often exists a trade-off between computational efficiency/simplicity and accuracy. While high-resolution methods are very accurate, they are computationally limited to relatively small domains. Since macroscopic properties of a porous medium are statistically representative only when sample sizes are sufficiently large, simple and efficient pore-scale methods are more attractive. In this work, two Eulerian pore-network models for simulating single-phase flow and solute transport are developed. The models focus on capturing two key pore-level mechanisms: a) partial mixing within pores (large void volumes), and b) shear dispersion within throats (narrow constrictions connecting the pores), which are shown to have a substantial impact on transverse and longitudinal dispersion coefficients at the macro scale. The models are verified with high-resolution pore-scale methods and validated against micromodel experiments as well as experimental data from the literature. Studies regarding the significance of different pore-level mixing assumptions (perfect mixing vs. partial mixing) in disordered media, as well as the predictive capacity of network modeling as a whole for ordered media are conducted. A mortar domain decomposition framework is additionally developed, under which efficient and accurate simulations on even larger and highly heterogeneous pore-scale domains are feasible. The mortar methods are verified and parallel scalability is demonstrated. It is shown that they can be used as “hybrid” methods for coupling localized pore-scale inclusions to a surrounding continuum (when insufficient scale separation exists). The framework further permits multi-model simulations within the same computational domain. An application of the methods studying “emergent” behavior during calcite precipitation in the context of geologic CO₂ sequestration is provided.<br>text
APA, Harvard, Vancouver, ISO, and other styles
17

Alqarni, Ali Saeed. "Quantifying the characteristics of fine aggregate using direct and indirect test methods." Thesis, 2013. http://hdl.handle.net/2152/23598.

Full text
Abstract:
The characteristics of fine aggregates, such as shape, angularity, and surface texture, have been shown to influence the performance of concrete and asphalt mixtures and to play an important role in obtaining valuable properties of early age concrete such as workability, and compatibility. However, the measurement of fine aggregate characteristics is not easy. In the present study, 26 fine aggregates, covering a wide spectrum of mineralogy, were examined using direct and indirect test methods in order to evaluate the shape, angularity, and surface texture, as well as to analyze the gradation. The direct test methods, such as AIMS and Camsizer, which provide a digital image of the aggregates proved to be the best. However, the cost of such systems can limit the use of digital imagining systems in practice. The indirect test methods which provide an estimate of aggregate surface characteristics, such as uncompacted void test, mortar flow test, compressive strength test, and flakiness test gave variable results. The uncompacted void test (Method A) was shown to be the most accurate indirect test method. The Camsizer and the sieve analysis test produced identical gradation analysis results when an adequate sample was used. General correlations were developed between the direct and indirect test methods. The non-approved fine aggregates on the TxDOT’s list were analyzed and compared to those of the approved fine aggregates to see whether they could be successfully used. It was found that both LS-5 and LS-8 had good results—even better than the results of some of the approved fine aggregates. Thus, they could be successfully used.<br>text
APA, Harvard, Vancouver, ISO, and other styles
18

Holder, Rachel. "Studies into the Initial Conditions, Flow Rate, and Containment System of Oil Field Leaks in Deep Water." Thesis, 2013. http://hdl.handle.net/1969.1/151119.

Full text
Abstract:
Oil well blow outs are investigated to determine methods to quickly and accurately respond to an emergency situation. Flow rate is needed to guide containment and dispersal operations. The Stratified Integral Multiphase Plume, SIMP, model was used to investigate the range of initial conditions available to integral modeling. Sensitivity to initial conditions is modest, but without experimental data at the appropriate scale the most accurate condition is unable to be determined. Flow rates are difficult to directly measure in blow out situations, so another method must be determined; therefore, sensitivity of several parameters to flow rate was also evaluated. Methane concentration in the first intrusion can be used in conjunction with velocity and trap height measurements to determine flow rate using an integral model. Plume width and temperature were determined to have little sensitivity. Separately, a containment dome was tested in the laboratory to determine if a full scale dome can be used to contain an oil leak in the field. The dome was found to have satisfactory entrapment in the designed position.
APA, Harvard, Vancouver, ISO, and other styles
19

(12608132), Roslyn Howse. "Biological impacts of acid mine drainage in the Dee River, downstream of the Mt Morgan Mine, Central Queensland, Australia." Thesis, 2003. https://figshare.com/articles/thesis/Biological_impacts_of_acid_mine_drainage_in_the_Dee_River_downstream_of_the_Mt_Morgan_Mine_Central_Queensland_Australia/19836388.

Full text
Abstract:
<p>Mining for gold and copper was undertaken for nearly 100 years from 1882 at Mount Morgan in Central Queensland. Re -processing of. tailings ceased in the early 1990s and no</p> <p>mining has been conducted since. The legacy of the historical mining practices is an open cut (threatening to overflow) and acid mine drainage (AMD) extending for a considerable distance along the -Dee River.</p> <p>The first -18 km- of the river downstream- of- the mine, to its junction with Fletcher Creek, is severely impacted with pH consistently below 3.5. Water metal concentrations are many times higher than the water quality standards for freshwater biota. For example, the filtered mean concentrations of Al and Cu at 4 sites in this section of the river were 87.3 and 6.45 mg/L, respectively. Fish, molluscs and shrimp were absent and macroinvertebrate species richness was limited to only insects in this severely impacted region. Water quality of the river improves at the junction with Fletcher Creek and downstream the water quality is only severely impacted during periods of flow following rain events.</p> <p>This study examined the biological impacts downstream of the mine including the response of biota to flows in the river. Whilst previous studies had investigated spatial variations in macroinvertebrate communities this study also examined temporal variation and response to flow. The metal content of fish and mussels from the river were determined for the first time.</p>
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!