Academic literature on the topic 'Flow visualization, Visualization techniques, Simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flow visualization, Visualization techniques, Simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flow visualization, Visualization techniques, Simulation"
Urban, Ondřej, Michaela Kurková, and Pavel Rudolf. "Application of Computer Graphics Flow Visualization Methods in Vortex Rope Investigations." Energies 14, no. 3 (January 26, 2021): 623. http://dx.doi.org/10.3390/en14030623.
Full textSummers, Kenneth L., Thomas Preston Caudell, Kathryn Berkbigler, Brian Bush, Kei Davis, and Steve Smith. "Graph Visualization for the Analysis of the Structure and Dynamics of Extreme-Scale Supercomputers." Information Visualization 3, no. 3 (July 8, 2004): 209–22. http://dx.doi.org/10.1057/palgrave.ivs.9500079.
Full textAlmohammadi, Khaled Mohammad. "Smooth Particle Hydrodynamic and URAN Visualization of Multiphase Flow." Defect and Diffusion Forum 399 (February 2020): 87–91. http://dx.doi.org/10.4028/www.scientific.net/ddf.399.87.
Full textJiao, Yun, and Chengpeng Wang. "Visualization of separation and reattachment in an incident shock-induced interaction." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 235, no. 12 (March 11, 2021): 1706–16. http://dx.doi.org/10.1177/0954410020983495.
Full textBanaś, Michał, Piotr Antoniak, Lubomir Marciniak, and Jarosław Stryczek. "Visualization of flow phenomena in hydraulic throttle valves of plastics." MATEC Web of Conferences 211 (2018): 19001. http://dx.doi.org/10.1051/matecconf/201821119001.
Full textRozmanov, Dmitri, Svetlana Baoukina, and D. Peter Tieleman. "Density based visualization for molecular simulation." Faraday Discuss. 169 (2014): 225–43. http://dx.doi.org/10.1039/c3fd00124e.
Full textItamura, M., N. Yamamoto, E. Niyama, and K. Anzai. "Application of the flow visualization technique and flow simulation to diecasting flow analysis." International Journal of Cast Metals Research 9, no. 3 (September 1996): 139–43. http://dx.doi.org/10.1080/13640461.1996.11819653.
Full textSauer, Franz, Yubo Zhang, Weixing Wang, Stephane Ethier, and Kwan-Liu Ma. "Visualization Techniques for Studying Large-Scale Flow Fields from Fusion Simulations." Computing in Science & Engineering 18, no. 2 (March 2016): 68–77. http://dx.doi.org/10.1109/mcse.2015.107.
Full textYanev, A. S., Gustavo R. Dias, and António M. Cunha. "Visualization of Injection Moulding Process." Materials Science Forum 587-588 (June 2008): 716–20. http://dx.doi.org/10.4028/www.scientific.net/msf.587-588.716.
Full textDiab, Samir, and Dimitrios I. Gerogiorgis. "Design Space Identification and Visualization for Continuous Pharmaceutical Manufacturing." Pharmaceutics 12, no. 3 (March 5, 2020): 235. http://dx.doi.org/10.3390/pharmaceutics12030235.
Full textDissertations / Theses on the topic "Flow visualization, Visualization techniques, Simulation"
Üffinger, Markus [Verfasser], and Thomas [Akademischer Betreuer] Ertl. "Advanced visualization techniques for flow simulations : from higher-order polynomial data to time-dependent topology / Markus Üffinger. Betreuer: Thomas Ertl." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1048327558/34.
Full textWisby, C. "Real-time digital imaging techniques for flow visualization." Thesis, University of Surrey, 1989. http://epubs.surrey.ac.uk/848586/.
Full textZhao, Amy (Xiaoyu Amy). "Applying video magnification techniques to the visualization of blood flow." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99799.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 85-94).
In this thesis, we investigate the use of video magnification for the visualization and assessment of blood flow. We address the challenge of low signal-to-noise ratios in video magnification by modeling the problem and developing an algorithm for measuring the SNR in the context of video magnification. We demonstrate that the algorithm can be used to estimate the SNR of a real video and predict the SNR in the magnified video. We use several techniques based on video magnification to visualize the blood flow in a healthy hand and a hand with an occluded artery, and show that these visualizations highlight differences between the hands that might be indicative of important physiological differences.
by Amy (Xiaoyu) Zhao.
S.M.
Burr, Janice E. "Jet mixing : the role of numerical flow visualization /." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-12162009-020204/.
Full textSeaton, M. Scot. "Performance measurements, flow visualization, and numerical simulation of a crossflow fan." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Mar%5FSeaton.pdf.
Full textThesis advisor(s): Garth V. Hobson, Raymond P. Shreeve. Includes bibliographical references (p. 69-70). Also available online.
Schlup, Jason. "Two phase flow visualization in evaporator tube bundles using experimental and numerical techniques." Thesis, Kansas State University, 2013. http://hdl.handle.net/2097/16237.
Full textDepartment of Mechanical and Nuclear Engineering
Steven Eckels and Mohammad Hosni
This research presents results from experimental and numerical investigations of two-phase flow pattern analysis in a staggered tube bundle. Shell-side boiling tube bundles are used in a variety of industries from nuclear power plants to industrial evaporators. Fluid flow patterns in tube bundles affect pressure drop, boiling characteristics, and tube vibration. R-134a was the working fluid in both the experimental and computational fluid dynamics (CFD) analysis for this research. Smooth and enhanced staggered tube bundles were studied experimentally using a 1.167 pitch to diameter ratio. The experimental tube bundles and CFD geometry consist of 20 tubes with five tubes per pass. High speed video was recorded during the experimental bundle boiling. Bundle conditions ranged in mass fluxes from 10-35 kg/m[superscript]2.s and inlet qualities from 0-70% with a fixed heat flux. Classification of the flow patterns from these videos was performed using flow pattern definitions from literature. Examples of smooth and enhanced bundle boiling high speed videos are given through still images. The flow patterns are plotted and compared with an existing flow pattern map. Good agreement was found for the enhanced tube bundle while large discrepancies exist for the smooth tube bundle. The CFD simulations were performed without heat transfer with non-symmetrical boundary conditions at the side walls, simulating rectangular bundles used in this and other research. The two-phase volume of fluid method was used to construct vapor interfaces and measure vapor volume fraction. A probability density function technique was applied to the results to determine flow patterns from the simulations using statistical parameters. Flow patterns were plotted on an adiabatic flow pattern map from literature and excellent agreement is found between the two. The agreement between simulation results and experimental data from literature emphasizes the use of numerical techniques for tube bundle design.
Ferrier, Adrian Jon. "Processing techniques for flow images obtained by planar laser-induced fluorescence." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/24097.
Full textTauer, Gregory W. "A graph-based factor screening method for synchronous data flow simulation models /." Online version of thesis, 2009. http://hdl.handle.net/1850/9833.
Full textLe, Roux Frederick Nicolaas. "The CFD simulation of an axial flow fan." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4344.
Full textENGLISH ABSTRACT: The purpose of this project is to investigate the method and accuracy of simulating axial ow fans with three-dimensional axisymmetric CFD models. Two models are evaluated and compared with experimental fan data. Veri cation data is obtained from a prototype fan tested in a facility conforming to the BS 848 standards. The ow eld over the blade surfaces is investigated further with a visualization experiment comprising of a stroboscope and wool tufts. Good correlation is found at medium to high ow rates and recommendations are made for simulation at lower ow rates as well as test guidelines at the fan test facility. The results and knowledge gained will be used to amend currently used actuator disc theory for axial ow fan simulation.
AFRIKAANSE OPSOMMING: Die doel van hierdie projek is om die metode en akkuraatheid om aksiaalvloeiwaaiers met drie-dimensionele BVM modelle te simuleer, te ondersoek. Twee modelle word geëvalueer en met eksperimentele waaiertoetse vergelyk. Veri- kasie data is verkry vanaf 'n prototipe waaier wat in 'n fasiliteit getoets is en wat aan die BS 848 standaarde voldoen. Die vloeiveld oor die lemoppervlaktes word ondersoek met 'n visualisering eksperiment wat uit 'n stroboskoop en wolletjies bestaan. Goeie korrelasie word gevind vir medium tot hoë massavloeie en aanbevelings word gemaak vir die simulasie by laer massavloeie met riglyne vir toetswerk in die toets-fasiliteit. Die resultate en kennis opgedoen sal gebruik word in die verbetering van huidige aksieskyfteorie vir numeriese aksiaalvloeiwaaier simulasies.
Karch, Grzegorz Karol [Verfasser], and Thomas [Akademischer Betreuer] Ertl. "Visualization of two-phase flow dynamics : techniques for droplet interactions, interfaces, and material transport / Grzegorz Karol Karch ; Betreuer: Thomas Ertl." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1154434788/34.
Full textBooks on the topic "Flow visualization, Visualization techniques, Simulation"
Merzkirch, Wolfgang. Techniques of flow visualization. Neuilly sur Seine, France: AGARD, 1987.
Find full textMerzkirch, Wolfgang. Techniques of flow visualization. Neuilly sur Seine: Agard, 1987.
Find full textBrodlie, K. W. Scientific Visualization: Techniques and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.
Find full textSaito, Tsutomu. Numerical simulation and visualization of freejet flow-fields. [S.l.]: [s.n.], 1986.
Find full textAdamovsky, Grigory. Optical techniques for shock visualization and detection. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textComputer-assisted flow visualization: Second generation technology. Boca Raton, FL: CRC Press, 1994.
Find full textStacy, Kathryn. Computer-aided light sheet flow visualization using photogrammetry. Hampton, Va: Langley Research Center, 1994.
Find full textSakas, Georgios. Fraktale Wolken, virtuelle Flammen: Computer-Emulation und Visualisierung turbulenter Gasbewegung. Berlin: Springer-Verlag, 1993.
Find full textH, Hasbrouck Hope, ed. Landscape modeling: Digital techniques for landscape visualization. New York: McGraw-Hill, 2001.
Find full textRussell, Louis M. Visualization techniques to experimentally model flow and heat transfer in turbine and aircraft flow passages. Cleveland, Ohio: Lewis Research Center, 1991.
Find full textBook chapters on the topic "Flow visualization, Visualization techniques, Simulation"
Sollows, K. F., C. R. Dutcher, A. C. M. Sousa, and J. E. S. Venart. "Photobleaching Flow Visualization." In Applications of Laser Techniques to Fluid Mechanics, 553–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61254-1_30.
Full textPozo Álvarez, Alberto. "Cardiac Flow Visualization Techniques." In Fluid Mechanics Applied to Medicine, 45–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60389-2_4.
Full textGoto, S., and H. Kato. "Numerical Simulation of Viscoelastic Fluid in Two Dimensional Channel Junctions." In Flow Visualization VI, 97–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_13.
Full textYusoff, Yusman Azimi, Farhan Mohamad, Mohd Shahrizal Sunar, and Ali Selamat. "Flow Visualization Techniques: A Review." In Trends in Applied Knowledge-Based Systems and Data Science, 527–38. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42007-3_46.
Full textBhalla, Upinder S. "Advanced XODUS Techniques: Simulation Visualization." In The Book of GENESIS, 337–62. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4684-0189-9_20.
Full textBhalla, Upinder S. "Advanced XODUS Techniques: Simulation Visualization." In The Book of GENESIS, 381–405. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1634-6_22.
Full textOta, Masahiro. "Numerical Visualization of Molecular Motion in Rarefied Gas Flows by Direct Simulation of Monte Carlo Method." In Flow Visualization VI, 772–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_138.
Full textHentschel, W., and S. Hehn. "Flow Analysis Inside a Passenger Car Silencer by Laser Light-Sheet and Coded Particle Trace Techniques." In Flow Visualization VI, 51–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_6.
Full textObermaier, Harald, Jörg Kuhnert, Martin Hering-Bertram, and Hans Hagen. "Stream Volume Segmentation of Grid-Less Flow Simulation." In Mathematics and Visualization, 127–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15014-2_11.
Full textBesse, L., G. Gottschalk, A. Moser, and P. Suter. "Measurement of the Spatial, Stationary and Time Variable Velocity Distribution of Airflow Using Tracer Particles and Still Video Techniques." In Flow Visualization VI, 223–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_36.
Full textConference papers on the topic "Flow visualization, Visualization techniques, Simulation"
Laramee, Robert S., and Helwig Hauser. "Geometric flow visualization techniques for CFD simulation data." In the 21st spring conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1090122.1090158.
Full textManesh, H. F., and M. Hashemipour. "An Educational Software Package for CFD Simulation and Visualization." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37182.
Full textGuo, Long-de, Zhaofei Zhou, and Long Zhang. "Research of the computer simulation technique for flow visualization." In Optical Technology and Image Processing fo rFluids and solids Diagnostics 2002, edited by Gong Xin Shen, Soyoung S. Cha, Fu-Pen Chiang, and Carolyn R. Mercer. SPIE, 2003. http://dx.doi.org/10.1117/12.509784.
Full textThurow, B. S. "Recent Progress Towards a High-Speed Three-Dimensional Flow Visualization Technique." In 2007 22nd International Congress on Instrumentation in Aerospace Simulation Facilities. IEEE, 2007. http://dx.doi.org/10.1109/iciasf.2007.4380893.
Full textLietsch, Stefan, Christoph Laroque, and Henning Zabel. "Computational Steering of Interactive Material Flow Simulations." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49405.
Full textZhu, Jianjun, Ruben Cuamatzi-Melendez, Jose Alberto Martinez Farfan, Haiwen Zhu, Jiecheng Zhang, and Hong-Quan Zhang. "Flow Pattern Prediction in Electrical Submersible Pump (ESP) Under Gassy Flow Conditions Using Transient Multiphase CFD Methods With Visualization Experimental Validation." In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83081.
Full textStraccia, Mattia, Rodolfo Hofmann, and Volker Gümmer. "New Methods for Secondary Flow Phenomena Visualization and Analysis." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91378.
Full textSoleimani, Manuchehr, William R. B. Lionheart, A. J. Peyton, and X. Ma. "Molten Metal Flow Visualization Using Mutual Induction Tomography (MIT)." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58016.
Full textDoumanidis, Charalabos C., and Brian P. Marquis. "Thermal Simulation and Visualization of Virtual Source Manufacturing Systems." In ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium collocated with the ASME 1995 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/cie1995-0822.
Full textSano, Yuta, Yutaka Abe, Akiko Fujiwara, Shoji Goto, Fumitoshi Watanabe, and Michitsugu Mori. "Visualization Study on Complicated Flow Through Lower Plenum of BWR." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48339.
Full textReports on the topic "Flow visualization, Visualization techniques, Simulation"
Denz, Thomas, Stephanie Smith, and Rajeev Shrestha. Multi-Hull Flow Visualization: An Investigation of Flow Visualization Techniques for Trimaran Hulls. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada486747.
Full textKuzay, T. M., H. J. Halle, and K. E. Kasza. Preliminary review of mass transfer and flow visualization studies and techniques relevant to the study of erosion-corrosion of reactor piping systems. Office of Scientific and Technical Information (OSTI), June 1988. http://dx.doi.org/10.2172/7131836.
Full text