To see the other types of publications on this topic, follow the link: Fluctuation-dissipation theorem.

Journal articles on the topic 'Fluctuation-dissipation theorem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fluctuation-dissipation theorem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ford, G. W. "The fluctuation–dissipation theorem." Contemporary Physics 58, no. 3 (2017): 244–52. http://dx.doi.org/10.1080/00107514.2017.1298289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fujikawa, Kazuo. "Fluctuation-dissipation theorem and quantum tunneling with dissipation." Physical Review E 57, no. 5 (1998): 5023–29. http://dx.doi.org/10.1103/physreve.57.5023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shimizu, Akira, and Kyota Fujikura. "Quantum violation of fluctuation-dissipation theorem." Journal of Statistical Mechanics: Theory and Experiment 2017, no. 2 (2017): 024004. http://dx.doi.org/10.1088/1742-5468/aa5a67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chakrabarti, J. "Fluctuation–dissipation theorem for QCD plasma." Journal of Mathematical Physics 26, no. 12 (1985): 3190–92. http://dx.doi.org/10.1063/1.526647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Furche, Filipp, and Troy Van Voorhis. "Fluctuation-dissipation theorem density-functional theory." Journal of Chemical Physics 122, no. 16 (2005): 164106. http://dx.doi.org/10.1063/1.1884112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brookes, Sarah J., James C. Reid, Denis J. Evans, and Debra J. Searles. "The Fluctuation Theorem and Dissipation Theorem for Poiseuille Flow." Journal of Physics: Conference Series 297 (May 1, 2011): 012017. http://dx.doi.org/10.1088/1742-6596/297/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Izmailov, A. F., and A. S. Myerson. "Fluctuation–dissipation theorem for supersaturated electrolyte solutions." Physica A: Statistical Mechanics and its Applications 267, no. 1-2 (1999): 34–57. http://dx.doi.org/10.1016/s0378-4371(98)00667-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zimdahl, W. "Fluctuation-dissipation theorem in the early universe." Physics Letters A 142, no. 4-5 (1989): 229–32. http://dx.doi.org/10.1016/0375-9601(89)90320-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nemenman, Ilya. "Fluctuation-Dissipation Theorem and Models of Learning." Neural Computation 17, no. 9 (2005): 2006–33. http://dx.doi.org/10.1162/0899766054322982.

Full text
Abstract:
Advances in statistical learning theory have resulted in a multitude of different designs of learning machines. But which ones are implemented by brains and other biological information processors? We analyze how various abstract Bayesian learners perform on different data and argue that it is difficult to determine which learning—theoretic computation is performed by a particular organism using just its performance in learning a stationary target (learning curve). Based on the fluctuation—dissipation relation in statistical physics, we then discuss a different experimental setup that might be
APA, Harvard, Vancouver, ISO, and other styles
10

Levin, Yuri. "Fluctuation–dissipation theorem for thermo-refractive noise." Physics Letters A 372, no. 12 (2008): 1941–44. http://dx.doi.org/10.1016/j.physleta.2007.11.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Seifert, U., and T. Speck. "Fluctuation-dissipation theorem in nonequilibrium steady states." EPL (Europhysics Letters) 89, no. 1 (2010): 10007. http://dx.doi.org/10.1209/0295-5075/89/10007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kalman, G., and Xiao-Yue Gu. "Quadratic fluctuation-dissipation theorem: The quantum domain." Physical Review A 36, no. 7 (1987): 3399–414. http://dx.doi.org/10.1103/physreva.36.3399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, L. Y. "Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics." Journal of Chemical Physics 129, no. 14 (2008): 144113. http://dx.doi.org/10.1063/1.2992153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhang, Zhedong, Wei Wu, and Jin Wang. "Fluctuation-dissipation theorem for nonequilibrium quantum systems." EPL (Europhysics Letters) 115, no. 2 (2016): 20004. http://dx.doi.org/10.1209/0295-5075/115/20004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Golden, Kenneth I. "Quadratic fluctuation-dissipation theorem for multilayer plasmas." Physical Review E 59, no. 1 (1999): 228–33. http://dx.doi.org/10.1103/physreve.59.228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mottola, Emil. "Quantum fluctuation-dissipation theorem for general relativity." Physical Review D 33, no. 8 (1986): 2136–46. http://dx.doi.org/10.1103/physrevd.33.2136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Reggiani, Lino, and Eleonora Alfinito. "Fluctuation Dissipation Theorem and Electrical Noise Revisited." Fluctuation and Noise Letters 18, no. 01 (2019): 1930001. http://dx.doi.org/10.1142/s0219477519300015.

Full text
Abstract:
The fluctuation dissipation theorem (FDT) is the basis for a microscopic description of the interaction between electromagnetic radiation and matter. By assuming the electromagnetic radiation in thermal equilibrium and the interaction in the linear-response regime, the theorem interrelates the macroscopic spontaneous fluctuations of an observable with the kinetic coefficients that are responsible for energy dissipation in the linear response to an applied perturbation. In the quantum form provided by Callen and Welton in their pioneering paper of 1951 for the case of conductors [H. B. Callen a
APA, Harvard, Vancouver, ISO, and other styles
18

Dembo, Amir, and Jean-Dominique Deuschel. "Markovian perturbation, response and fluctuation dissipation theorem." Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 46, no. 3 (2010): 822–52. http://dx.doi.org/10.1214/10-aihp370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jou, D., and M. Zakari. "Nonlinear transport coefficients and fluctuation-dissipation theorem." Physics Letters A 203, no. 2-3 (1995): 129–32. http://dx.doi.org/10.1016/0375-9601(95)00386-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fujikawa, Kazuo, and Hiroaki Terashima. "Fluctuation-dissipation theorem and quantum tunneling with dissipation at finite temperature." Physical Review E 58, no. 6 (1998): 7063–70. http://dx.doi.org/10.1103/physreve.58.7063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pottier, Noëlle, and Alain Mauger. "Quantum fluctuation-dissipation theorem: a time-domain formulation." Physica A: Statistical Mechanics and its Applications 291, no. 1-4 (2001): 327–44. http://dx.doi.org/10.1016/s0378-4371(00)00523-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

De Gregorio, P., F. Sciortino, P. Tartaglia, E. Zaccarelli, and K. A. Dawson. "Slowed relaxational dynamics beyond the fluctuation–dissipation theorem." Physica A: Statistical Mechanics and its Applications 307, no. 1-2 (2002): 15–26. http://dx.doi.org/10.1016/s0378-4371(01)00398-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cionni, I., G. Visconti, and F. Sassi. "Fluctuation dissipation theorem in a general circulation model." Geophysical Research Letters 31, no. 9 (2004): n/a. http://dx.doi.org/10.1029/2004gl019739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

OKABE, Yasunori. "KMO-Langevin Equation and Fluctuation-Dissipation Theorem (I)." Hokkaido Mathematical Journal 15, no. 2 (1986): 163–216. http://dx.doi.org/10.14492/hokmj/1381518224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

OKABE, Yasunori. "KMO-Langevin Equation and Fluctuation-Dissipation Theorem (II)." Hokkaido Mathematical Journal 15, no. 3 (1986): 317–55. http://dx.doi.org/10.14492/hokmj/1381518232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mehboudi, Mohammad, Anna Sanpera, and Juan M. R. Parrondo. "Fluctuation-dissipation theorem for non-equilibrium quantum systems." Quantum 2 (May 24, 2018): 66. http://dx.doi.org/10.22331/q-2018-05-24-66.

Full text
Abstract:
The fluctuation-dissipation theorem (FDT) is a central result in statistical physics, both for classical and quantum systems. It establishes a relationship between the linear response of a system under a time-dependent perturbation and time correlations of certain observables in equilibrium. Here we derive a generalization of the theorem which can be applied to any Markov quantum system and makes use of the symmetric logarithmic derivative (SLD). There are several important benefits from our approach. First, such a formulation clarifies the relation between classical and quantum versions of th
APA, Harvard, Vancouver, ISO, and other styles
27

Costa, I. V. L., R. Morgado, M. V. B. T. Lima, and F. A. Oliveira. "The Fluctuation-Dissipation Theorem fails for fast superdiffusion." Europhysics Letters (EPL) 63, no. 2 (2003): 173–79. http://dx.doi.org/10.1209/epl/i2003-00514-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Das, Ashok K., and J. Frenkel. "Derivation of the fluctuation–dissipation theorem from unitarity." Modern Physics Letters A 30, no. 32 (2015): 1550163. http://dx.doi.org/10.1142/s0217732315501631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Nielsen, Johannes K., and Jeppe C. Dyre. "Fluctuation-dissipation theorem for frequency-dependent specific heat." Physical Review B 54, no. 22 (1996): 15754–61. http://dx.doi.org/10.1103/physrevb.54.15754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

REGGIANI, L., P. SHIKTOROV, E. STARIKOV, and V. GRUŽINSKIS. "QUANTUM FLUCTUATION DISSIPATION THEOREM REVISITED: REMARKS AND CONTRADICTIONS." Fluctuation and Noise Letters 11, no. 03 (2012): 1242002. http://dx.doi.org/10.1142/s0219477512420023.

Full text
Abstract:
The quantum fluctuation dissipation theorem (QFDT) in the Callen–Welton [ Phys. Rev.83 (1951) 34] form is critically revisited. We show that the role of the system eigenvalues is in general not correctly accounted for by the accepted form of the QFDT. As a consequence, a series of quantum results claimed in the literature, like the presence of zero point fluctuations, the violation of the quantum regression hypothesis, the non-white spectrum of the Langevin force, etc. emerge as a consequence of an incorrect application of the theorem. In this context the case of the single harmonic oscillator
APA, Harvard, Vancouver, ISO, and other styles
31

Cooper, Fenwick C., and Peter H. Haynes. "Climate Sensitivity via a Nonparametric Fluctuation–Dissipation Theorem." Journal of the Atmospheric Sciences 68, no. 5 (2011): 937–53. http://dx.doi.org/10.1175/2010jas3633.1.

Full text
Abstract:
Abstract The fluctuation–dissipation theorem (FDT) has been suggested as a method of calculating the response of the climate system to a small change in an external parameter. The simplest form of the FDT assumes that the probability density function of the unforced system is Gaussian and most applications of the FDT have made a quasi-Gaussian assumption. However, whether or not the climate system is close to Gaussian remains open to debate, and non-Gaussianity may limit the usefulness of predictions of quasi-Gaussian forms of the FDT. Here we describe an implementation of the full non-Gaussia
APA, Harvard, Vancouver, ISO, and other styles
32

Gallavotti, Giovanni. "Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem." Journal of Statistical Physics 84, no. 5-6 (1996): 899–925. http://dx.doi.org/10.1007/bf02174123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Li, Lei, Jian-Guo Liu, and Jianfeng Lu. "Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem." Journal of Statistical Physics 169, no. 2 (2017): 316–39. http://dx.doi.org/10.1007/s10955-017-1866-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Giacometti, Achille, Amos Maritan, Flavio Toigo, and Jayanth R. Banavar. "Fluctuation-dissipation theorem and the dynamical renormalization group." Journal of Statistical Physics 82, no. 5-6 (1996): 1669–74. http://dx.doi.org/10.1007/bf02183399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nicolis, C., J. P. Boon, and G. Nicolis. "Fluctuation-dissipation theorem and intrinsic stochasticity of climate." Il Nuovo Cimento C 8, no. 3 (1985): 223–42. http://dx.doi.org/10.1007/bf02574709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gomes-Filho, Márcio S., and Fernando A. Oliveira. "The hidden fluctuation-dissipation theorem for growth (a)." EPL (Europhysics Letters) 133, no. 1 (2021): 10001. http://dx.doi.org/10.1209/0295-5075/133/10001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Feng, Sze-Shiang. "Some Exact Results of Hubbard Model at Finite Temperature." Modern Physics Letters B 12, no. 14n15 (1998): 555–59. http://dx.doi.org/10.1142/s0217984998000652.

Full text
Abstract:
Two theorems of the Hubbard model at nite temperature are proven employing the fluctuation–dissipation theorem and particle–hole transform. The main conclusion states that for the prototype Hubbard model, the expectation value of [Formula: see text] will be of order Nλ at any temperature except those critical.
APA, Harvard, Vancouver, ISO, and other styles
38

Lapas, L. C., R. Morgado, A. L. A. Penna, and F. A. Oliveira. "Non-equilibrium Fluctuation-Dissipation Theorem for Stationary Anomalous Diffusion." Acta Physica Polonica B 46, no. 6 (2015): 1155. http://dx.doi.org/10.5506/aphyspolb.46.1155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wyatt, J. L., B. D. O. Anderson, and G. J. Coram. "Limits to the fluctuation-dissipation theorem for nonlinear circuits." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47, no. 9 (2000): 1323–29. http://dx.doi.org/10.1109/81.883327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Widom, A., C. Vittoria, and S. D. Yoon. "Gilbert ferromagnetic damping theory and the fluctuation-dissipation theorem." Journal of Applied Physics 108, no. 7 (2010): 073924. http://dx.doi.org/10.1063/1.3330646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nicolis, C., and G. Nicolis. "The Fluctuation–Dissipation Theorem Revisited: Beyond the Gaussian Approximation." Journal of the Atmospheric Sciences 72, no. 7 (2015): 2642–56. http://dx.doi.org/10.1175/jas-d-14-0391.1.

Full text
Abstract:
A linear response theory of systems of interest in atmospheric and climate dynamics taking fully into account the nonlinearities of the underlying processes is developed. Under the assumption that the source of intrinsic variability can be modeled as a white-noise process, a Fokker–Planck equation approach leads to fluctuation–dissipation-type expressions in the form of time cross-correlation functions, linking the perturbation-induced shift of an observable to the statistical and dynamical properties of the reference system. These expressions feature a generalized potential function and enabl
APA, Harvard, Vancouver, ISO, and other styles
42

Nicolis, Stam, Pascal Thibaudeau, and Julien Tranchida. "Finite-dimensional colored fluctuation-dissipation theorem for spin systems." AIP Advances 7, no. 5 (2017): 056012. http://dx.doi.org/10.1063/1.4975132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gruebele, M. "Matrix Fluctuation−Dissipation Theorem: Application to Quantum Relaxation Phenomena." Journal of Physical Chemistry 100, no. 30 (1996): 12178–82. http://dx.doi.org/10.1021/jp960442q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hütter, Markus, and Hans Christian Öttinger. "Fluctuation-dissipation theorem, kinetic stochastic integral and efficient simulations." Journal of the Chemical Society, Faraday Transactions 94, no. 10 (1998): 1403–5. http://dx.doi.org/10.1039/a800422f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Maes, Christian. "On the Second Fluctuation–Dissipation Theorem for Nonequilibrium Baths." Journal of Statistical Physics 154, no. 3 (2014): 705–22. http://dx.doi.org/10.1007/s10955-013-0904-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Schieber, Jay D. "Do internal viscosity models satisfy the fluctuation-dissipation theorem?" Journal of Non-Newtonian Fluid Mechanics 45, no. 1 (1992): 47–61. http://dx.doi.org/10.1016/0377-0257(92)80060-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yoshida, K. "A derivation of fluctuation-dissipation theorem from commutation relations." Optics Communications 90, no. 1-3 (1992): 115–16. http://dx.doi.org/10.1016/0030-4018(92)90340-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sheth, Janaki K. "Generalized Fluctuation-Dissipation Theorem Applied to Active Hair Bundles." Biophysical Journal 112, no. 3 (2017): 534a. http://dx.doi.org/10.1016/j.bpj.2016.11.2886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Matyushov, Dmitry V. "Electron transfer in nonpolar media." Physical Chemistry Chemical Physics 22, no. 19 (2020): 10653–65. http://dx.doi.org/10.1039/c9cp06166e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Krommes, John A. "Advances in gyrokinetic fluctuation theory: The gyrokinetic fluctuation–dissipation theorem and dielectric function*." Physics of Fluids B: Plasma Physics 5, no. 7 (1993): 2405–11. http://dx.doi.org/10.1063/1.860724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!