Journal articles on the topic 'Flue gas CO2 capture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Flue gas CO2 capture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chmielniak, Tadeusz, Paweł Mońka, and Paweł Pilarz. "Investigation of a combined gas-steam system with flue gas recirculation." Chemical and Process Engineering 37, no. 2 (June 1, 2016): 305–16. http://dx.doi.org/10.1515/cpe-2016-0025.
Full textKim, Eugene J., Rebecca L. Siegelman, Henry Z. H. Jiang, Alexander C. Forse, Jung-Hoon Lee, Jeffrey D. Martell, Phillip J. Milner, et al. "Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks." Science 369, no. 6502 (July 23, 2020): 392–96. http://dx.doi.org/10.1126/science.abb3976.
Full textLi, Fang Qin, Ji Yong Liu, Xiao Feng Zhang, Jian Xing Ren, and Jiang Wu. "The Effects of Operation Parameters on CO2 Removal Efficiency by Membrane Method." Advanced Materials Research 955-959 (June 2014): 2326–29. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.2326.
Full textPeng, Pu, and Yi Zhuang. "The Evaluation and Comparison of Carbon Dioxide Capture Technologies Applied to FCC Flue Gas." Advanced Materials Research 347-353 (October 2011): 1479–82. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.1479.
Full textAdu, Emmanuel, Y. D. Zhang, Dehua Liu, and Paitoon Tontiwachwuthikul. "Parametric Process Design and Economic Analysis of Post-Combustion CO2 Capture and Compression for Coal- and Natural Gas-Fired Power Plants." Energies 13, no. 10 (May 15, 2020): 2519. http://dx.doi.org/10.3390/en13102519.
Full textWu, Guoqing, Ying Liu, Guangliang Liu, and Xiaoying Pang. "The CO2 Absorption in Flue Gas Using Mixed Ionic Liquids." Molecules 25, no. 5 (February 25, 2020): 1034. http://dx.doi.org/10.3390/molecules25051034.
Full textMajchrzak-Kucęba, Izabela, Dariusz Wawrzyńczak, Janusz Zdeb, Wojciech Smółka, and Artur Zajchowski. "Treatment of Flue Gas in a CO2 Capture Pilot Plant for a Commercial CFB Boiler." Energies 14, no. 9 (April 26, 2021): 2458. http://dx.doi.org/10.3390/en14092458.
Full textSakpal, Kumar, Aman, and Kumar. "Carbon Dioxide Capture from Flue Gas Using Tri-Sodium Phosphate as an Effective Sorbent." Energies 12, no. 15 (July 26, 2019): 2889. http://dx.doi.org/10.3390/en12152889.
Full textLi, Pengli, Yongli Shen, Dandan Wang, Yanli Chen, and Yunfeng Zhao. "Selective Adsorption-Based Separation of Flue Gas and Natural Gas in Zirconium Metal-Organic Frameworks Nanocrystals." Molecules 24, no. 9 (May 11, 2019): 1822. http://dx.doi.org/10.3390/molecules24091822.
Full textCheng, Chu-Yun, Chia-Chen Kuo, Ming-Wei Yang, Zong-Yu Zhuang, Po-Wei Lin, Yi-Fang Chen, Hong-Sung Yang, and Cheng-Tung Chou. "CO2 Capture from Flue Gas of a Coal-Fired Power Plant Using Three-Bed PSA Process." Energies 14, no. 12 (June 16, 2021): 3582. http://dx.doi.org/10.3390/en14123582.
Full textDrioli, Enrico, Adele Brunetti, and Giuseppe Barbieri. "Ceramic Membranes in Carbon Dioxide Capture: Applications and Potentialities." Advances in Science and Technology 72 (October 2010): 105–18. http://dx.doi.org/10.4028/www.scientific.net/ast.72.105.
Full textQin, Hong Yan, Peng Zhi Zhang, Si Si Zhang, and Xiang Peng Wang. "Experimental Study on Regularities of Carbonation for CO2 Capture Using Ammonia Solution." Advanced Materials Research 800 (September 2013): 62–66. http://dx.doi.org/10.4028/www.scientific.net/amr.800.62.
Full textAlexanda Petrovic, Ben, and Salman Masoudi Soltani. "Optimization of Post Combustion CO2 Capture from a Combined-Cycle Gas Turbine Power Plant via Taguchi Design of Experiment." Processes 7, no. 6 (June 12, 2019): 364. http://dx.doi.org/10.3390/pr7060364.
Full textHasan, Saman, Abubakar Jibrin Abbas, and Ghasem Ghavami Nasr. "Improving the Carbon Capture Efficiency for Gas Power Plants through Amine-Based Absorbents." Sustainability 13, no. 1 (December 23, 2020): 72. http://dx.doi.org/10.3390/su13010072.
Full textGazda-Grzywacz, Magdalena, Łukasz Winconek, and Piotr Burmistrz. "Carbon Footprint for Mercury Capture from Coal-Fired Boiler Flue Gas." Energies 14, no. 13 (June 25, 2021): 3844. http://dx.doi.org/10.3390/en14133844.
Full textHou, Shuhn-Shyurng, Chiao-Yu Chiang, and Ta-Hui Lin. "Oxy-Fuel Combustion Characteristics of Pulverized Coal under O2/Recirculated Flue Gas Atmospheres." Applied Sciences 10, no. 4 (February 17, 2020): 1362. http://dx.doi.org/10.3390/app10041362.
Full textWilk, Andrzej, Lucyna Więcław-Solny, Dariusz Śpiewak, Tomasz Spietz, and Hanna Kierzkowska-Pawlak. "A Selection of Amine Sorbents for CO2 Capture from Flue Gases." Chemical and Process Engineering 36, no. 1 (March 1, 2015): 49–57. http://dx.doi.org/10.1515/cpe-2015-0004.
Full textLv, Yue Xia, Chong Qing Xu, Gui Huan Yan, Dong Yan Guo, and Qi Xiao. "A Review on CO2 Capture Using Membrane Gas Absorption Technology." Advanced Materials Research 616-618 (December 2012): 1541–45. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.1541.
Full textNikolaeva, D., I. Azcune, E. Sheridan, Marius Sandru, A. Genua, M. Tanczyk, M. Jaschik, K. Warmuzinski, J. C. Jansen, and I. F. J. Vankelecom. "Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO2 capture from flue gas." Journal of Materials Chemistry A 5, no. 37 (2017): 19808–18. http://dx.doi.org/10.1039/c7ta05171a.
Full textMcGaughy, Kyle, and M. Toufiq Reza. "Systems Analysis of SO2-CO2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents." Energies 13, no. 2 (January 16, 2020): 438. http://dx.doi.org/10.3390/en13020438.
Full textAhmad, Mohd Aizad, Muhammad Fahmi Nizam, and Zulkifli Abdul Rashid. "Evaluation of Renewable Methanol Production Plant Design Using Tri-Pressure Stripper Configuration." Key Engineering Materials 797 (March 2019): 342–50. http://dx.doi.org/10.4028/www.scientific.net/kem.797.342.
Full textRahimi, Mohammad, Giulia Catalini, Monica Puccini, and T. Alan Hatton. "Bench-scale demonstration of CO2 capture with an electrochemically driven proton concentration process." RSC Advances 10, no. 29 (2020): 16832–43. http://dx.doi.org/10.1039/d0ra02450c.
Full textWu, Xiao Na, Liang Wang, Zhao Hui Zhang, Wen Yang Li, and Xing Fei Guo. "Experimental Studies on CO2 Absorption in Immersed Hollow Fiber Membrane Contactor." Applied Mechanics and Materials 209-211 (October 2012): 1571–75. http://dx.doi.org/10.4028/www.scientific.net/amm.209-211.1571.
Full textElsaidi, Sameh K., Mona H. Mohamed, Herbert T. Schaef, Amrit Kumar, Matteo Lusi, Tony Pham, Katherine A. Forrest, et al. "Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas." Chemical Communications 51, no. 85 (2015): 15530–33. http://dx.doi.org/10.1039/c5cc06577a.
Full textHan, Yang, Yutong Yang, and W. S. Winston Ho. "Recent Progress in the Engineering of Polymeric Membranes for CO2 Capture from Flue Gas." Membranes 10, no. 11 (November 23, 2020): 365. http://dx.doi.org/10.3390/membranes10110365.
Full textD'Alessandro, Deanna M., and Thomas McDonald. "Toward carbon dioxide capture using nanoporous materials." Pure and Applied Chemistry 83, no. 1 (November 19, 2010): 57–66. http://dx.doi.org/10.1351/pac-con-10-09-18.
Full textDuan, Yong Hua, Hui Li, De Long Xu, Le Le Zhang, and Xiao Fan. "Oxygen-Enriched Combustion Technology Application and Economical Forecast in Cement Industry Kiln." Advanced Materials Research 645 (January 2013): 505–10. http://dx.doi.org/10.4028/www.scientific.net/amr.645.505.
Full textMarco-Lozar, Juan Pablo, Mirko Kunowsky, Fabián Suárez-García, and Angel Linares-Solano. "Sorbent design for CO2 capture under different flue gas conditions." Carbon 72 (June 2014): 125–34. http://dx.doi.org/10.1016/j.carbon.2014.01.064.
Full textShi, Zhaolin, Yu Tao, Jiasheng Wu, Cuizheng Zhang, Hailong He, Liuliu Long, Yongjin Lee, Tao Li, and Yue-Biao Zhang. "Robust Metal–Triazolate Frameworks for CO2 Capture from Flue Gas." Journal of the American Chemical Society 142, no. 6 (January 23, 2020): 2750–54. http://dx.doi.org/10.1021/jacs.9b12879.
Full textWang, Xia, Dongying Wang, Mingjun Song, Chunling Xin, and Wulan Zeng. "Tetraethylenepentamine-Modified Activated Semicoke for CO2 Capture from Flue Gas." Energy & Fuels 31, no. 3 (February 14, 2017): 3055–61. http://dx.doi.org/10.1021/acs.energyfuels.6b03177.
Full textSu, Fengsheng, Chungsying Lu, Wenfa Cnen, Hsunling Bai, and Jyh Feng Hwang. "Capture of CO2 from flue gas via multiwalled carbon nanotubes." Science of The Total Environment 407, no. 8 (April 2009): 3017–23. http://dx.doi.org/10.1016/j.scitotenv.2009.01.007.
Full textLuo, Liangfei, Fangqin Li, Haigang Ji, and Haiwen Wang. "Technology Research for CO2 Capture from Coal-fired Flue Gas." International Journal of Energy and Power 5 (2016): 48. http://dx.doi.org/10.14355/ijep.2016.05.007.
Full textWei, Chiao-Chien, Graeme Puxty, and Paul Feron. "Amino acid salts for CO2 capture at flue gas temperatures." Chemical Engineering Science 107 (April 2014): 218–26. http://dx.doi.org/10.1016/j.ces.2013.11.034.
Full textWei, Steven Chiao-Chien, Graeme Puxty, and Paul Feron. "Amino acid salts for CO2 capture at flue gas temperatures." Energy Procedia 37 (2013): 485–93. http://dx.doi.org/10.1016/j.egypro.2013.05.134.
Full textScholes, Colin A., Minh T. Ho, Alita A. Aguiar, Dianne E. Wiley, Geoff W. Stevens, and Sandra E. Kentish. "Membrane gas separation processes for CO2 capture from cement kiln flue gas." International Journal of Greenhouse Gas Control 24 (May 2014): 78–86. http://dx.doi.org/10.1016/j.ijggc.2014.02.020.
Full textFernández, Josefa, and M. J. Renedo. "Sulfation and Carbonation Competition in the Treatment of Flue Gas from a Coal-Based Power Plant by Calcium Hydroxide." International Journal of Chemical Reactor Engineering 13, no. 2 (June 1, 2015): 177–82. http://dx.doi.org/10.1515/ijcre-2014-0182.
Full textChen, Shujun, Min Zhu, Yingchun Tang, Yue Fu, Wenliang Li, and Bo Xiao. "Molecular simulation and experimental investigation of CO2 capture in a polymetallic cation-exchanged 13X zeolite." Journal of Materials Chemistry A 6, no. 40 (2018): 19570–83. http://dx.doi.org/10.1039/c8ta05647a.
Full textJaved, M. Tayyeb, and Bill Nimmo. "Oxygen Enriched and Oxyfuel Combustion - Promising Trends for Low Carbon Future." Applied Mechanics and Materials 145 (December 2011): 11–15. http://dx.doi.org/10.4028/www.scientific.net/amm.145.11.
Full textHan, Yang, and W. S. Winston Ho. "Recent developments on polymeric membranes for CO2 capture from flue gas." Journal of Polymer Engineering 40, no. 6 (July 28, 2020): 529–42. http://dx.doi.org/10.1515/polyeng-2019-0298.
Full textAsendrych, Dariusz, Paweł Niegodajew, and Stanisław Drobniak. "CFD Modelling of CO2 Capture in a Packed Bed by Chemical Absorption." Chemical and Process Engineering 34, no. 2 (June 1, 2013): 269–82. http://dx.doi.org/10.2478/cpe-2013-0022.
Full textSarauta, Abdulkadir, and Ibrahim Ali Mohammed Dabo. "Novel Pilot-Scale Technology for Refinery Flare Flue Gas Carbon Capture and Storage Using Cost-Effective Adsorbents." Symmetry 13, no. 5 (May 5, 2021): 807. http://dx.doi.org/10.3390/sym13050807.
Full textWitasek, Roman, and Petr Pánek. "New Trends in the Separation of Significant Greenhouse Gases from Flue Gas Streams." Advanced Materials Research 1020 (October 2014): 573–78. http://dx.doi.org/10.4028/www.scientific.net/amr.1020.573.
Full textMcGlashan, N. R., and A. J. Marquis. "Availability analysis of post-combustion carbon capture systems: Minimum work input." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221, no. 9 (September 1, 2007): 1057–65. http://dx.doi.org/10.1243/09544062jmes424.
Full textAndreasen, Anders. "Optimisation of carbon capture from flue gas from a Waste-to-Energy plant using surrogate modelling and global optimisation." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 76 (2021): 55. http://dx.doi.org/10.2516/ogst/2021036.
Full textDinca, Cristian, Adrian Badea, and Horia Necula. "High Performance of the CFBC Pilot Plant with CO2 Chemical Absorption by Optimizing the Absorber Parameters." Advanced Materials Research 746 (August 2013): 3–8. http://dx.doi.org/10.4028/www.scientific.net/amr.746.3.
Full textGoel, Chitrakshi, Haripada Bhunia, and Pramod K. Bajpai. "Resorcinol–formaldehyde based nanostructured carbons for CO2 adsorption: kinetics, isotherm and thermodynamic studies." RSC Advances 5, no. 113 (2015): 93563–78. http://dx.doi.org/10.1039/c5ra16255f.
Full textDębowski, Marcin, Mirosław Krzemieniewski, Marcin Zieliński, and Joanna Kazimierowicz. "Immobilized Microalgae-Based Photobioreactor for CO2 Capture (IMC-CO2PBR): Efficiency Estimation, Technological Parameters, and Prototype Concept." Atmosphere 12, no. 8 (August 12, 2021): 1031. http://dx.doi.org/10.3390/atmos12081031.
Full textHe, Li Juan, Jie Qiong Li, Yan Ling Ni, Jun Hua Yi, and Wen Fei Wu. "Experimental Study on Mass Transfer Performances in a New Rotating Packed Bed." Advanced Materials Research 726-731 (August 2013): 2182–85. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.2182.
Full textLian, Xinbo, Leilei Xu, Mindong Chen, Cai-e. Wu, Wenjing Li, Bingbo Huang, and Yan Cui. "Carbon Dioxide Captured by Metal Organic Frameworks and Its Subsequent Resource Utilization Strategy: A Review and Prospect." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3059–78. http://dx.doi.org/10.1166/jnn.2019.16647.
Full textOsagie, EI. "Evaluation of Emissions of 2-Amino-2-Methyl-1-Propanol Degradation Products by adding Degradation Reactions to the Carbon Dioxide Capture Unit." Journal of Applied Sciences and Environmental Management 24, no. 11 (January 11, 2021): 1993–98. http://dx.doi.org/10.4314/jasem.v24i11.21.
Full text