Academic literature on the topic 'Flue gas sampling thermal treatment'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flue gas sampling thermal treatment.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Flue gas sampling thermal treatment"

1

Kim, Jinkyu, Yuri Kim, Bumsoo Han, Nikolai Doutzkinov, and Kwang-Young Jeong. "Electron-beam Flue-gas Treatment Plant for Thermal Power Station." Journal of the Korean Physical Society 59, no. 6(1) (December 15, 2011): 3494–98. http://dx.doi.org/10.3938/jkps.59.3494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Paulauskas, Jõgi, Striūgas, Martuzevičius, Erme, Raud, and Tichonovas. "Application of Non-Thermal Plasma for NOx Reduction in the Flue Gases." Energies 12, no. 20 (October 17, 2019): 3955. http://dx.doi.org/10.3390/en12203955.

Full text
Abstract:
Over the years, ever more stringent requirements on the pollutant emissions, especially NOX, from combustion systems burning natural gas are introduced by the European Union (EU). Among all NOX reduction methods, the flue gas treatment by plasma is widely applied and could be used for both small scale and domestic combustion systems. However, the removal efficiency depends on concentrations of oxygen, water vapor, traces of hydrocarbons, and nitrogen oxides in flue gas. In order to analyze the application of the NOX reduction for small-scale or domestic combustion systems, experiments of NOX reduction by non-thermal plasma from real flue gases originating from premixed methane combustion at different equivalence ratio (ER) values were performed. It was determined that the residual oxygen in flue gas plays an important role for improvement of NO to NO2 oxidation efficiency when O2 concentrations are equal to or higher than 6%. The power consumption for the plasma oxidation constituted approximately 1% of the burner power. In the case of ozone treatment, the addition of O3 to flue gas showed even more promising results as NO formed during combustion was fully oxidized to NO2 at all ER values.
APA, Harvard, Vancouver, ISO, and other styles
3

Bhosale, Rahul R., and Vijaykumar V. Mahajani. "Kinetics of thermal degradation of renewably prepared amines useful for flue gas treatment." Journal of Renewable and Sustainable Energy 5, no. 6 (November 2013): 063110. http://dx.doi.org/10.1063/1.4831960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Qiu Ping, Lei Han, Miao Zhang, and Feng Li. "Boiler Flue Gas Treatment of Cooling Water Circulation Device Control System Based on PLC." Applied Mechanics and Materials 598 (July 2014): 587–90. http://dx.doi.org/10.4028/www.scientific.net/amm.598.587.

Full text
Abstract:
Boiler flue gas treatment of cooling water circulation device is a device which can produce dilute sulfuric acid by absorbing SO2 in the flue gas of boiler combustion and add dilute sulfuric acid to the circulating water. Adding dilute sulfuric acid to the circulating water, can reduce pH value of the thermal power plant cooling water, obstacles and reduce the condenser fouling. This paper has introduced the working process of the boiler flue gas treatment of cooling water circulation device and the design method of the control system based on SIEMENS S7-300 series PLC. The control system realizes data acquisition of the water level and the pH value, and control the operation of each equipment according to the collected data. Finally realized the purpose of producing dilute sulfuric acid.
APA, Harvard, Vancouver, ISO, and other styles
5

Huy, Nguyen Nhat, and Bích Thảo Nguyễn Thị. "Thermal oxidation of carbon monoxide in air using various self-prepared catalysts." Science & Technology Development Journal - Engineering and Technology 2, SI2 (July 7, 2020): First. http://dx.doi.org/10.32508/stdjet.v2isi2.469.

Full text
Abstract:
Carbon monoxide (CO) is a very toxic pollutant emitted from wood fired boiler, which is widely used in small and medium enterprises in Vietnam. The treatment of CO containing flue gas faces many difficulties due to the inert property of CO and cannot be removed by traditional adsorption and absorption methods and one of the effective CO treatments is catalytic oxidation. Therefore, we aimed to prepare various catalysts on different carriers for treatment of CO in flue gas, including γ-Al2O3-based metal oxides (Co3O4/Al2O3, Cr2O3/Al2O3, and CuO/Al2O3), CuO–MnOx/OMS-2, and CuO-MnOx/zeolite. The CO removal tests were conducted in a continuous fixed bed reactor in laboratory scale with temperature range of 50 – 550 oC. The characteristics of catalytic materials were then determined by various methods such as Brunauer-Emmett-Teller measurement, X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Results showed that CuO-MnOx/OMS-2 was the best catalyst with high removal efficiency of 98.41% at reactor temperature of 250 oC while gas outlet temperature of < 50 oC, proving the suitability of this material for practical treatment of CO in flue gas. The reaction follows Mars-Van-Krevelen mechanism with the presence of Cu2+-O2--Mn4+ ↔ Cu+-o-Mn3+ + O2 redox in the structure of the material. Moreover, the effect of environmental factors such as flow rate, inlet CO concentration, and catalysts amount on the CO removal efficiency were investigated and noted for designing and operation purposes. Concentration of outlet CO met well QCVN 19: 2009/BTNMT - National technical regulation on industrial emissions for dust and inorganic substances. Therefore, CuO-MnOx/OMS-2 catalyst material could be a potential catalyst for treatment of CO in flue gas of boiler.
APA, Harvard, Vancouver, ISO, and other styles
6

Arena, Umberto, Michael Nelles, and Joachim Werther. "Advanced aspects of thermal treatment of solid wastes: From a flue gas to a fuel gas technology?" Waste Management 32, no. 4 (April 2012): 623–24. http://dx.doi.org/10.1016/j.wasman.2011.12.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ali, Abubakar M., Mohd A. Abu Hassan, Raja R. K. Ibrahim, Aishah A. Jalil, Nadirul H. Mat Nayan, Bala I. Abdulkarim, and Ali H. Sabeen. "Analysis of Solid residue and Flue Gas from Thermal Plasma Treatment of Petroleum Sludge." Journal of Environmental Chemical Engineering 7, no. 4 (August 2019): 103207. http://dx.doi.org/10.1016/j.jece.2019.103207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Takaoka, Masaki, Kazuyuki Oshita, Masaharu Okada, Tomoaki Watanabe, and Koji Tanida. "Mercury behaviour in flue gas from sewage sludge incinerators and melting furnace." Water Science and Technology 2017, no. 3 (June 1, 2018): 782–90. http://dx.doi.org/10.2166/wst.2018.268.

Full text
Abstract:
Abstract Thermal conversion of sewage sludge can be a clean source of renewable energy if the emission of air pollutants from the source is controlled. In 2013, the Minamata Convention on Mercury was adopted, placing greater emphasis on the control of mercury emissions, including mercury emissions from sewage sludge incinerators. To characterise the behaviour of mercury in flue gas, particulate and gaseous mercury concentrations in two incinerators and a melting furnace were measured by manual sampling. In a third facility, continuous emission monitoring was used to characterise temporal trends in gaseous mercury concentrations. Wet scrubbers were determined to be effective air pollution control devices suitable for mercury removal. Stack mercury concentrations were found to be &lt;10 μg/Nm3, which meets the mercury emission standard for existing plants (50 μg/Nm3).
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Huiqian, Jing Wang, Jiangbo Wu, and Xiaoze Du. "Study on Spray Evaporation Treatment of Desulfurization Wastewater." Coatings 11, no. 4 (April 4, 2021): 418. http://dx.doi.org/10.3390/coatings11040418.

Full text
Abstract:
Limestone-gypsum wet flue gas desulfurization (WFGD) often produces a certain amount of wastewater with complex water quality and heavy metal pollution which should be treated properly before release. Spaying the desulfurization wastewater into flue duct and using exhausted flue gas heat for evaporation is a promising and economical technology for achieving zero wastewater discharge in thermal power plant. To enable a more in-depth understanding on evaporation of FGD wastewater spray, a visual wind tunnel test rig based on the atomized droplet laser measuring system was built to reveal the impact factors on droplet thermal-fluid behavior. The dominant impact factors such as compressed air pressure and flow rate in air-blast spray nozzle, hot air temperature and velocity in the evaporation tunnel were analyzed to discuss the droplet size distribution and evaporation performance through alternating operate condition. A discrete mathematical model that combines both Eulerian and Lagrangian framework was established to validate the experiment result. It is concluded that introducing high pressure compressed air into the nozzle can contribute to the dispersion of droplets and enhance the evaporation rate. Proper flow rate in spray nozzle is required to avoid incomplete droplets evaporation. Air temperature and velocity in the evaporation tunnel apply positive impact on droplet size distribution and evaporation performance. Numerical simulation results of both dominant factors impact on evaporation behavior and total evaporation rate showed consistency with the experimental outcome.
APA, Harvard, Vancouver, ISO, and other styles
10

Namba, Hideki, Okihiro Tokunaga, Tadashi Tanaka, Yoshimi Ogura, Shinji Aoki, and Ryoji Suzuki. "The study of electron beam flue gas treatment for coal-fired thermal plant in Japan." Radiation Physics and Chemistry 42, no. 4-6 (October 1993): 669–72. http://dx.doi.org/10.1016/0969-806x(93)90349-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Flue gas sampling thermal treatment"

1

Weidemann, Eva. "Waste incineration residues : Persistent organic pollutants in flue gas and fly ash from waste incineration." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-92765.

Full text
Abstract:
Modern societies produce large quantities of municipal solid waste (MSW), which is commonly disposed of by incineration. This has several advantages: it reduces the waste’s volume and sterilizes it while also enabling energy recovery. However, MSW incineration has some notable disadvantages, the most widely debated of which is probably the production and release of persistent organic pollutants (POP) such as polychlorinated dibenzofurans (PCDF), dibenzo-p-dioxins (PCDD), biphenyls (PCB) and naphthalenes (PCN). Of the 210 PCDF and PCDD congeners, 17 are toxic, with hormone-disrupting and carcinogenic properties. Twelve of the 209 PCB congeners and at least 2 of the 75 PCN also exhibit such properties. These POP form in the post-combustion zones of MSW incineration plants and are removed from the flue gas using filtering devices that trap them in the fly ash This thesis concerns the formation and degradation of POP in processes related to MSW incineration. The first paper describes a case study in which PCDD were forming in filters designed to remove them from flue gases, causing emission-related issues in a full-scale MSW incineration plant. It was shown that the PCDD formation was probably due to chlorophenol condensation on the filters’ surfaces. The second paper describes the validation of a cooling probe designed to prevent POP formation during high temperature (>450 °C) flue gas sampling. The results obtained also confirmed that PCDF and PCDD formation takes place at temperatures below 600 °C. In the third paper, three different fly ashes were subjected to thermal treatment under an inert atmosphere in a rotary kiln and in sealed ampoules at 400 °C. The concentrations, degrees of chlorination and congener profiles of the POP in the treated ashes and emitted gases were compared to those for the untreated ashes. The trends observed for PCDF mirrored those for PCN, while the trends for PCDD closely resembled those for PCB. The PCDF congener profiles of the kiln ash were similar regardless of the initial ash composition, suggesting that the mechanisms of PCDF formation were similar in all cases. The fourth paper describes the surface characterization of the three fly ashes studied in paper three by SEM, EDX, XPS and XRD. In addition, the thermal desorption and subsequent degradation of POP from the ashes was studied at temperatures of 300-900 °C. The composition of the gases released as the temperature increased differed between the ashes and depended on their composition. Doping experiments using isotopically labelled PCDF and PCDD suggests that PCDD desorbed at lower temperatures than PCDF. This thesis examines several problems relating to POP formation during MSW incineration, from sampling to the ultimate fate of incineration residues. The results obtained illustrate the wide range of processes that contribute to thermal POP formation and degradation during and after MSW incineration.
Förbränning av hushållssopor är en vanlig metod för att hantera ett växande avfallsproblem. Metoden har flera fördelar, såsom minskning av volym och vikt, sterilisering och energiåtervinning. Sopförbränning har dock vissa nackdelar och det mest debatterade är sannolikt utsläpp av persistenta organiska föroreningar (POPs) som polyklorerad dibensofuran (PCDF), dibenso-p-dioxin (PCDD), bifenyl (PCB) och naftalen (PCN). Det finns totalt 210 PCDF- och PCDD- kongener, med mellan ett till åtta klor på kolskelettet, varav 17 är giftiga med hormonstörande och cancerframkallande egenskaper. Även tolv av totalt 209 PCB-kongener samt minst två av totalt 75 PCN-kongener uppvisar liknande egenskaper. Dessa klorerade organiska föroreningar bildas då rökgaserna kyls ner i sopförbränningsanläggningarna och avlägsnas från rökgaserna med hjälp av filter och hamnar i flygaskan. Denna avhandling handlar om bildning och nedbrytning av POPs i sopförbränningsrelaterade processer.   Den första artikeln är en fallstudie där PCDD bildas i filtren i en fullskalig sopförbränningsanläggning. Bildningen ledde till förhöjda halter organiska föroreningar i rökgaserna, vilket ledde till ökade utsläpp. Den funna bildningsvägen för PCDD i filtren befanns sannolikt bero på kondensation av klorfenoler på filterytorna. Den andra artikeln är en valideringsstudie av en kylprob avsedd att användas vid rökgasprovtagning vid hög temperatur (> 450 °C) för att undvika bildning av POPs under provtagningen. Studien bekräftade att majoriteten av PCDF- och PCDD- bildning i rökgaser från sopförbränning sker vid temperaturer under 600 °C. I den tredje artikeln berättas om behandling av tre olika flygaskor från olika sopförbränningsanläggningar. Askorna behandlades vid 400 °C i inert atmosfär i både en roterugn och i förseglade ampuller. De resulterande koncentrationerna, kloreringsgraderna och kongenprofilerna av de organiska föroreningarna jämfördes. Likheter hittades mellan PCDF och PCN, medan PCDD och PCB betedde sig på ett annat sätt. Studien fann också att PCDF kongenprofiler i aska som behandlats i roterugnen liknade varandra, oberoende av askornas sammansättning, vilket tyder på en liknande bildningsväg. För den fjärde artikeln, genomfördes ytkarakterisering (SEM, EDX, XPS och XRD) på de tre flygaskorna från artikel tre som sedan hettades upp från 30 °C till 900 °C i vacuum. Det som frigjordes på grund av uppvärmningen samt nedbrytningsprodukter från askorna studerades med hjälp av masspektrometri och infraröd spektroskopi. Studien fann att de gaser som frigjordes när temperaturen ökade skilde mellan askorna, beroende på deras sammansättning. Studien fann också att när aska dopad med isotopmärkt PCDF och PCDD utsattes för samma behandling, frigjordes PCDD vid lägre temperatur än PCDF. Denna avhandling berör flera aspekter av problematiken kring klorerade organiska föroreningar som bildas vid sopförbränning, från provtagning till hur man ska hantera flygaskan. Avhandlingen belyser även olika typer av bildning och nedbrytning av POPs i varma processer kopplade till sopförbränning.
APA, Harvard, Vancouver, ISO, and other styles
2

Sundberg, Joacim. "Simulating MPC Controlled Lime Injection for the Flue-gas Treatment at Fortum's Thermal Power Plant." Thesis, KTH, Reglerteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168248.

Full text
Abstract:
The aim of this thesis is to investigate the possibility to improve the separation of HCl and SO2 in the dry ue-gas treatment for boiler #3 at Fortum's thermal power plant in Hogdalen; by using a model predictive control instead of a PID controller to govern the slaked lime injection. To achieve this an ARMAX model was derived using MATLAB's System Identi cation Toolbox and measurements of the incoming and outgoing levels of HCl, SO2 and the speed of the injection motor. The ARMAX model was then converted to a state space model which will be used as the internal model for the MPC predictions. The cost function was a quadratic problem which included the error between the output and the set points, the change rate of the input and the inputs deviation from a default value. The MPC uses both a feedforward and a feedback loop to estimate the error over the prediction horizon. The controller also utilizes the ability to set constraints and tuning of the cost function weights. In conclusion, the thesis shows that a MPC controlled lime injection is possible and would o er some unique possibilities such as: natural constraints handling, more intuitive live tuning for the operator and prioritized input control. However the dry scrubber still struggles to suppress high amounts of incoming SO2 and since the project lacked a measuring unit for incoming HCl concentration the results showing an improvements in pollution separation was not conclusive.
Under 2011 utförde Fortum en ombyggnation av Panna 3 för att oka energiproduktionen vid Högdalens värmeverk. Detta ledde till ett okat rökgasflöde genom pannans rökgasrening och Fortum har sedan ombyggnationen noterat en försämrad separation av väteklorid (HCl) och svaveldioxid (SO2) i den torra rökgasreningen. I den torra rökgasreningen (torr skrubber) tillsatts släckt kalk till rökgaskanalen som sedan reagerar med HCl och SO2. Reaktionen mellan kalk och HCl/SO2 skapar ett fast ämne som kan filtreras med ett filter. Detta projekt har undersökt möjligheten att förbättra separationen av HCl och SO2 i den torr skrubbern genom att använda en prediktive regulator för att styra kalkinmatningen istället för en PID regulator. Projektet inleddes med att skapa en matematisk modell som beskriver sambandet mellan inkommande HCl, SO2 och kalk och utgående HCl och SO2. För att åstadkomma detta så mättes indata och utdata för att sedan användas i MATLAB's System Identification Toolbox som sedan skapade en ARMAX (Autoregressive Moving Average Extra signal) modell. Denna modell konverterades sedan till en tillståndsmodell för att bättre passa ändamålet som en intern modell i MPC regulatorn. Nästa steg var att sätta ihop själva regulatorn som styr hastigheten av de motorer som matar in kalk i rökgaskanalen i MATLAB Simulink. Denna regulator har till uppgift att hitta den optimala förändringen av motorhastigheten som gör så att utsignalen håller sig på en önskad referensnivå. Detta utförs genom att ställa upp en så kallad kostnadsfunktion som associerar en fiktiv kostnad till att avvika från referensnivån, att föreslå en stor ändring av motorhastigheten eller att avvika från en önskad motorhastighet. Kostnadsfunktionen ar formulerad som kvadratisk problem som MPC regulatorn försöker lösa för att hitta den optimala insignalen till systemet. Med andra ord så försöker regulatorn att hitta den minsta andringen av motorhastigheten som bidrar till den minsta avvikelsen från önskad motorhastighet och minsta avvikelsen mellan utsignal och referensnivå _a. Den framtagna regulatorn använder sig av både framkoppling och återkoppling för att estimera summan av de nuvarande och förväntade avvikelsen mellan utsignal och referensnivå. Regulatorn använder sig också av restriktioner som begränsar hastigheten på motorn och hur snabbt regulatorn kan andra den tidigare motorhastigheten. Detta betyder att regulatorn kommer endast att föreslå en förändring av hastigheten som ligger inom systemets restriktioner. Denna rapport kommer i jämförelsesyfte också att presentera en simulation av den existerande PID regulatorn. Resultaten från denna rapport kommer att innehålla den framtagna tillståndsmodellen, en skiss over den implementerade MPC regulatorn, den kod som utför själva optimeringen samt diagram från simuleringar av MPC och PID regulatorerna. I dessa resultat visade det sig att MPC regulatorn lyckas _åstadkomma marginellt bättre kontroll over utgående SO2 samt en mer exakt kontroll av utgående HCl. Det skall dock noteras att dessa resultat ar baserade på simuleringar och kan komma att andras i en verklig implementation. Aven med små förbättringar av utsläppsvärdena så erbjuder MPC regulatorn några intressanta möjligheter. En MPC regulator kan hantera restriktioner i processen mycket mer naturligt an PID regulatorn. Den kan också justeras under drift av operatören samt prioriterat val av kontrollsignal. Med prioriterat val av kontrollsignal menas att det ar möjligt att förknippa olika kostnader till era olika kontrollsignaler i kostnadsfunktionen. Detta skulle medföra att regulatorn prioriterar en andringar av den kontrollsignal som medför den minsta kostnaden under rådande omständigheter.
APA, Harvard, Vancouver, ISO, and other styles
3

Phan, Duong Ngoc Chau. "The relationship between fly ash chemistry and the thermal formation of polychlorinated pollutants during waste incineration." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-80186.

Full text
Abstract:
The thermal formation of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and naphthalenes (PCNs) is a major problem in waste incineration. Ideally, rather than relying on air cleaning systems and treatment techniques, their formation should be minimized or, if possible eliminated. The work presented in this thesis was conducted to obtain a deeper understanding of the thermal formation of PCDDs, PCDFs, PCBs, and PCNs during incineration using a 5 kW laboratory scale incinerator and two artificial wastes that were designed to reflect regional differences in waste composition. The first part of the thesis focuses on the validation of a recently-developed flue-gas sampling probe with enhanced cooling capabilities. Artifact formation of PCDDs and PCDFs can occur during the sampling of hot flue gases if the cooling is insufficient. The new probe was successfully used to collect samples at 700 °C without biasing the measured POP levels. The thermal formation of PCDDs, PCDFs, PCBs, and PCNs in the post-combustion zone of the incinerator was then studied by collecting flue gas samples at 400 °C, 300 °C, and 200 °C during the incineration of the two artificial wastes. Highly chlorinated POPs were formed in larger quantities when burning the waste with the higher content of metals and chlorine, which suggests that high metal levels in the waste favor the chlorination of less chlorinated POPs or otherwise facilitate the formation of highly chlorinated polyaromatics, possibly via the condensation of highly chlorinated phenols. The concentrations of these pollutants and the abundance of highly chlorinated homologues increased as the flue gas cooled. Fly ash particles play an important role in thermal POP formation by providing essential elements (carbon, chlorine, etc.) and catalytic sites. The chemical and mineralogical properties of fly ash samples were studied by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX), and X-ray photoelectron spectroscopy (XPS) to determine their impact on thermal POP formation. Orthogonal Partial Least Squares (OPLS) modeling was used to identify correlations between the observed POP distributions and the physicochemical data. This investigation provided new insights into the impact of fly ash chemistry on thermal POP formation. In addition, the POP isomer distribution patterns generated during waste combustion were examined. These patterns are used to “fingerprint” mechanisms of POP formation. It was found that wastes containing large quantities of metals and chlorine favored the formation of highly chlorinated homologues including the very toxic 2,3,7,8-congeners. The data suggest that reducing fly ash emissions might increase the SO2 content of the flue gas and thereby suppress the Deacon process and the formation of harmful highly chlorinated aromatic species.
APA, Harvard, Vancouver, ISO, and other styles
4

Sinha, Dipanwita. "Towards Achieving Better NOx Removal In Discharge Plasma Treatment Of Diesel Engine Exhaust." Thesis, 2007. http://hdl.handle.net/2005/648.

Full text
Abstract:
In India, the expansion of industries and two-fold increase in motor vehicles over the last decade are posing a serious environmental crisis in the form of urban air pollution. Common pollutants include carbon monoxide, sulfur dioxide, chlorofluorocarbons (CFCs), and nitrogen oxides produced by industry and motor vehicles. Air pollution results from a variety of sources. The natural sources include volcanoes, forest fire, scattering soil, biological decay, lightning strikes, dust storms etc. and man-made sources include thermal power plants, vehicular exhausts, incinerators and various other industrial emissions. More than 60% of the air pollution is contributed by these man-made sources. Amongst the gaseous pollutants, the major concern and a challenging task is to control oxides of nitrogen, commonly referred to as NOx. In case of diesel engines, despite the modification in engine design and improvement in after treatment technologies, large amount of NOx continues is get emitted and attempts to develop new catalyst to reduce NOx have so far been less successful. Further, with the emission standards becoming more stringent, estimates are that NOx and particulate matter emission must be reduced by as much as 90%. In this context, the emergence of electrical discharge plasma technique in combination with the few existing technologies is providing to be economically viable and efficient technology. In this thesis emphasis has been laid on the discharge based non-thermal plasma for NOx removal. NOx from simulated gas mixture and actual diesel engine exhaust has been treated. The thesis mainly addresses the following issues. . • Performance evaluation of pipe-cylinder and wire-cylinder reactor for NOx removal . • Study of effect of plasma assisted adsorbent reactor on NOx removal . • Study of effect of adsorption and plasma based desorption using different adsorbent material and electrode configuration The first chapter provides introduction about the air pollutants and the existing NOx control technologies, a brief history of electric discharge plasma, a detailed literature survey and scope of the work. A detailed experimental setup consisting of voltage sources, gas system (simulated flue gas and diesel exhaust), gas analyzers, adsorbent materials are discussed in the second chapter. In the third chapter, NOx is treated by three different methods and are described in separate parts. In first part we have done a comparative study of NO/NOx removal using two different types of dielectric barrier discharge electrodes: a) wire-cylinder reactor, b) pipe-cylinder reactor. Investigations were first carried out with synthetic gases to obtain the baseline information on the NO/NOx removal with respect to the two geometries studied. Further, experiments were carried out with raw diesel exhaust under loaded condition. A high NOx removal efficiency 90% was observed for pipe-cylinder reactor when compared to that with wire-cylinder reactor, where it was 53.4%. In second part an analysis has been made on discharge plasma coupled with an adsorbent system. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent based abatement system in the industry. During this study the exhaust is sourced from a diesel generator set. It was observed that better NO removal in a plasma reactor can be made possible by achieving higher average fields and subsequent NO2 removal can be improved using an adsorbent system connected in cascade with the plasma system. This part describes the various findings pertaining to these comparative analyses. The third and last part of chapter 3 consists of gas desorption from an adsorbent by non-thermal plasma, which is an alternative to conventional thermal desorption, has been studied in relation to diesel engine exhaust. In this process saturated adsorbent material is regenerated using high energetic electrons and excited molecules produced by non thermal plasma. The last Chapter lists out the major inferences drawn from this study.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Flue gas sampling thermal treatment"

1

Breault, Ronald W., Chris McLarnon, and V. K. Mathur. "Reaction Kinetics for Flue Gas Treatment of NOx." In Non-Thermal Plasma Techniques for Pollution Control, 239–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78476-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maezawa, A., and M. Izutsu. "Application of E-Beam Treatment to Flue Gas Cleanup in Japan." In Non-Thermal Plasma Techniques for Pollution Control, 47–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78476-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Flue gas sampling thermal treatment"

1

Tang, Chunli, Jianbo Li, Qingwen Qi, Chang’an Wang, and Defu Che. "Optimization Design and Thermal Economy Analysis of the Flue Gas Treatment System in Power Plant." In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49302.

Full text
Abstract:
A novel flue gas treatment system was proposed in this paper. The system integrates the low pressure economizer (LPE) with the desulphurized flue gas heater (DFGH) for both waste heat recovery of the exhaust gas and the desulphurized flue gas heating. A model for the system was established based on the equivalent enthalpy drop theory. The thermal economic comparisons among 5 feasible connection schemes for the flue gas treatment system of a 300 MW unit were executed. The parametric analyses were also performed to evaluate the effects of the outlet flue gas temperature and the condensate temperature of the DFGH. Results indicate that the optimized flue gas treatment system can improve the thermal economy and heat the desulphurized flue gas. Better thermal economy is achieved when the LPE is connected with the high energy level feed water heater, and the low pressure extraction steam is extracted for heating desulphurized flue gas. The thermal economy decreases with the increase of the outlet flue gas temperature of the DFGH while it increases slightly with the decrease of the condensate temperature of the DFGH.
APA, Harvard, Vancouver, ISO, and other styles
2

Pakzadeh, Behrang, Jay Wos, and Jay Renew. "Flue Gas Desulfurization Wastewater Treatment for Coal-Fired Power Industry." In ASME 2014 Power Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/power2014-32278.

Full text
Abstract:
The United States Environmental Protection Agency (USEPA)’s announcement that it will revise the effluent limitation guidelines for steam electric power generating units could affect not only how power plants use water, but also how they discharge it. The revised guidelines may lower discharge limits for various contaminants in flue gas desulfurization (FGD) wastewater including mercury, selenium, arsenic, and nitrate/nitrite. Although the specific details of the guidelines are unknown at present, the power industry is evaluating various technologies that may address the new effluent limitation guidelines and promote water conservation. Moreover, the power industry is looking for avenues to increase water usage efficiency, reuse and recycle throughout its plant processes. Final rule approval is expected by the middle of 2014 and new regulations are expected to be implemented between 2017 and 2022 through 5-year NPDES permit cycles. discharge limits for various contaminants including arsenic, mercury, selenium, and nitrate/nitrite [1]. These pollutant limits may be below the levels achievable today with conventional treatment [2]. A growing interest exists in zero liquid discharge (ZLD) facilities and processes in power plant operations. Potentially stringent discharge limits along with water conservation and reuse efforts are two of the major drivers to achieve ZLD. Potential pollutant levels are so low that ZLD may be the best option, if not an outright requirement [1]. Thermal ZLD systems have been the subject of increased interest and discussion lately. They employ evaporating processes such as ponds, evaporators and crystallizers, or spray dryers to produce a reusable water stream and a solid residue (i.e. waste). Evaporators and crystallizers have been employed in the power industry for a number of years. However, typical A growing interest exists in zero liquid discharge (ZLD) facilities and processes in power plant operations. Potentially stringent discharge limits along with water conservation and reuse efforts are two of the major drivers to achieve ZLD. Potential pollutant levels are so low that ZLD may be the best option, if not an outright requirement. A key disadvantage of thermal ZLD is its high capital cost. One way to reduce this cost is to pre-treat the liquid stream using innovative membrane technologies and reverse osmosis (RO).
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Guoqing, Zhuxia Shao, Yisong Cao, Deyi Wang, and Jing Fu. "Research of the treatment of flue gas desulfurization by gliding arc discharge plasma in thermal power plants." In 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2016. http://dx.doi.org/10.1109/ichve.2016.7800735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Robertson, Daniel, Stephen Burnley, and Rod Barratt. "The Immobilisation of Flue Gas Treatment Residues Through the Use of a Single Staged Wash and Crystalline Matrix Encapsulation (CME) Treatment Process." In 11th North American Waste-to-Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/nawtec11-1679.

Full text
Abstract:
All incineration and other thermal treatment technologies produce flue gas treatment residues (FGTR) that require specialised treatment and disposal. In the United Kingdom the FGTR arising from municipal solid waste incineration is classified as a hazardous (special) waste. This is primarily due to the irritant properties of chloride, but also due to the content of heavy metals. These wastes must be handled, transported & disposed of in accordance with the Special Waste Regulations 1996 and are disposed into highly engineered landfill sites, which isolate the material from the environment. The low levels of trace elements in the FGTR mean that the recycling of the metallic elements is not economic. Control through stabilisation and encapsulation in a crystalline matrix converts the FGTR primary form from a powder into solid block form. The use of a novel metal matrix encapsulation (MME) process allows low level engineering processes to be employed, increasing a range of reuse options combined with long-term improved storage.
APA, Harvard, Vancouver, ISO, and other styles
5

Jia, L., E. J. Anthony, and Richard Turnbell. "Treatment of Sydney Tar Pond Sludge in CFBC." In 18th International Conference on Fluidized Bed Combustion. ASMEDC, 2005. http://dx.doi.org/10.1115/fbc2005-78123.

Full text
Abstract:
Test burns of mixtures of Sydney tar pond sludge and coal were carried out using CETC’s mini-circulating fluidized bed combustor (mini-CFBC). The goal was to determine if CFBC technology could be used to treat the tar pond sludge. During the tests, CO2, O2, CO, SO2, and NOx in the flue gas were monitored continuously. Stack gas sampling was carried out for HCl, metals, particulate matter, VOCs, total hydrocarbons, semi-volatile organic compounds, dioxins and furans and PCBs. Results showed that HCl, Hg, particulate matter, PCDD/Fs and metal concentrations were all below both the current limits and the gas release limits to be implemented in 2008 in Canada. Sulphur capture efficiency was about 89–90%. The percentage of fuel nitrogen converted to NOx was of the order of 4.7 to 6.1, which is significantly lower than that of conventional pulverized coal-fired boilers and well within normal range of FBC boilers. PCB and PAH emissions levels were comparable or lower than levels reported in the literature for industrial-scale FBCs. VOC concentrations were low except for benzene, for which the concentration was higher than that reported for utility-scale FBC and pulverized coal-fired boilers. In addition, CO concentration was high at 1200 to 2200 ppm. However, these CO concentrations are typical of CETC’s mini-CFBC firing coal. The trials showed that, for 10% by weight tar pond sludge mixed with 90% by weight coal, the combustion was both stable and efficient. The tests demonstrated that CFBC technology could be an environmentally sound option for eliminating wastes from the Sydney tar pond.
APA, Harvard, Vancouver, ISO, and other styles
6

Virmond, Elaine, Robson L. Schacker, Waldir Albrecht, Christine A. Althoff, Mauri´cio de Souza, Regina F. P. M. Moreira, and Humberto J. Jose´. "Combustion of Apple Juice Wastes in a Cyclone Combustor for Thermal Energy Generation." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90152.

Full text
Abstract:
The thermal conversion of biomass fuels using different combustion technologies has increased worldwidely in the latest years due to the energetic exploitation potential of wastes as well as to the strong increase of environmental consciousness in the industrial sector. In this work the bagasse obtained from the apple juice industry (AB) was characterized and the gaseous emissions resulting from its combustion in a pilot scale cyclone combustor were measured and compared to limits imposed by Brazilian and international current legislations. Wood and wood-based materials are extensively used as fuel for thermal energy generation particularly in the Brazilian food industry, which demands large amounts of steam. Considering that, sawdust (SD) was also characterized, burned in the same conditions and the gaseous emissions analyzed for comparison purposes. Sampling for the volatile organic compounds benzene, toluene, ethyl-benzene and xylene (BTEX, expressed as total organic carbon, TOC) and polycyclic aromatic hydrocarbons (PAH) were performed and the samples analyzed by gaseous chromatography-mass spectrometry (GC-MS). Chemical properties showed that the volatile matter value of AB is high (85.36 wt%, daf) what indicates that the solid burn rapidly. The absence of sulfur in its composition represents an advantage in relation to fossil fuels because its combustion does not release sulfur derived compounds. The lower heating value is 21.09 MJ.kg−1 (daf), 26.9% higher than the heating value of SD (16.62 MJ.kg−1). The effect of the N fuel content found in AB composition was clearly noticed through the high NOx concentration in the flue gas resulted from its burning. Comparing the properties and the burning profiles of SD and AB, it can be stated that this industrial waste obtained from the apple juice industry is suitable for direct combustion, constituting a renewable energy source for this industrial sector, however, measures as air staging and staged addition of fuel, or flue gas cleaning technologies would be required for reducing the NOx emission. Concerning the presence of toxic compounds as PAH, they were not detected once the operation conditions applied resulted in controlled gaseous emissions and temperature profile. Also, TOC concentrations remained below the regulations limits considered.
APA, Harvard, Vancouver, ISO, and other styles
7

d’Ailly, Jan, and Sung Chun Kim. "Gasification of MSW in South Korea." In 17th Annual North American Waste-to-Energy Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/nawtec17-2350.

Full text
Abstract:
Over the past 15 years, South Korea has been actively pursuing a sustainable waste management strategy, which includes the thermal treatment of non-recyclable waste. Over 18,000 tons/day of waste are thermally treated in South Korea in over 40 plants. Since municipalities are not allowed to export waste outside of their respective jurisdictions, plants range in size from 25 ton/day to over 500 tons/day. There are currently 7 plants on 6 sites using gasification technology in South Korea, with the first plant in operation since 2001. The purpose of this paper is to describe how the downdraft gasification technology works, integration of the technology into a complete energy from waste facility, operating history, availability, emission levels and lessons learned. Synopsis of the technology: Curbside Municipal Solid Waste (MSW) is rough shredded and fed into the primary chamber through an air lock. The gasification occurs in the low temperature negative pressurized primary chamber where the MSW goes through drying, pyrolysis and gasification stages. The resulting syn-gas is filtered through the char bed into a secondary chamber where combustion takes place, producing a hot inert flue gas. A Heat Recovery Steam Generator (boiler) is used to recover the thermal energy from the flue gas. The char at the bottom of the primary chamber is oxidized, creating the heat for the gasification process. The air pollution control system is located after the Boiler and consists of carbon and lime injection followed by a bag filter. Operating history, availability and emission levels are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Bulgarino, Nicole A. "Savannah River Site Biomass Cogeneration Facility." In ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98160.

Full text
Abstract:
Ameresco & Department of Energy Savannah River partnered together to install three biomass fueled energy plants. The main plant is a 20 megawatt steam power plant and the other two smaller plants are thermal heating plants. All three facilities are located on the Department of Energy Savannah River Site (SRS). These facilities were developed and financed under an Energy Savings Performance Contract (ESPC), which utilizes energy and operational savings to fund the capital investment and operations cost over the performance period. Ameresco was fully responsible for the design, installation, oversight, management, safety, environmental compliance, and continues to be responsible for the operations and maintenance of the Biomass Cogeneration Facility. This is the largest biomass facility installed under ESPC in the federal government. The facilities have the capacity to combust 385,000 tons of forest residue annually. In the first year alone, the energy and operation cost savings at SRS is in excess of $34 million. Clean biomass and bio-derived fuels (such as tire derived fuel and untreated pallets) is the primary fuel source for all of the new boilers. Biomass is used to fuel two steam boilers capable of producing 240,000 lb. /hr. of high-pressure steam and to power a steam turbine capable of generating up to 20 MW of electricity. The smaller thermal plants provide biomass-produced steam for the areas’ heating and industrial processes. These plants satisfy winter steam requirements for both domestic heat and process steam and is fueled solely with biomass wood chips, utilizing fuel oil as backup source of fuel. Key benefits of the SRS biomass project include: • Over 2,000,000 MBtu/yr. of thermal renewable energy production and a minimum of generation of 77,000,000 kWh of green power • Annual Energy Reductions of approximately 500,000 MBtu/yr. • No-cost Renewable Energy Credits retained by the DOE SR • Support of the South Carolina Biomass Council Goals • Decrease of water intake from the Savannah River by 1,400,000 kgal/yr., supporting water conservation efforts in the region • Reduction of 400 tons/yr. of Particulate Matter (PM) emissions • Reduction of 3,500 tons/yr. of Sulfur Dioxide emissions • Reduction of 100,000 tons/yr. of Carbon Dioxide emissions The smaller heating plants include the main boiler systems and live bottom trailer fuel storage. The Biomass Cogeneration Facility includes the biomass boiler systems, the steam turbine generation system, and the facility auxiliary systems as well as the site infrastructure within these boundaries. The Facility has been designed, built, and tested per industrial/commercial codes for cogeneration facilities. The main components of the Facility are listed below: • Fuel Yard – Material Unloading & Storage and Delivery System ○ Biomass Fuel Chip unloading system ○ Fuel Storage Area ○ Transfer conveyors ○ Fuel Screening System ○ Tire Derived Fuel Storage & Unloading Area ○ Whole Log Chipping System & Storage • Water Treatment System – Water treatment system to treat river water for use in boilers as well as cooling tower for condensing turbine • Boiler Systems – (2) Boiler Island from metering bin, water side and flue gas side, pollution control devices and stacks • Chemical Treatment System – Chemical skids, injection skids for cooling tower and boiler treatment • Steam Turbine Generator System & Turbine Cooling System – (1) steam turbine and generator & Cooling Tower with cooling tower pumps • Emergency Generator System – (1) back diesel generator • Plant Control System – Master SCADA system which integrates all systems and balance of plant equipment I/O into one control system
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Flue gas sampling thermal treatment"

1

Adams, Terry R., Steven D. Nolen, Jeremy Ed Sweezy, and Tony P. Hasenack. THE FREE GAS THERMAL TREATMENT IN MCATK: Sampling the Thermal Motion of the Target Nucleus (U). Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1053544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography