To see the other types of publications on this topic, follow the link: Fluid Dynamics.

Journal articles on the topic 'Fluid Dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fluid Dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yamagami, Shigemasa, Tetta Hashimoto, and Koichi Inoue. "OS23-6 Thermo-Fluid Dynamics of Pulsating Heat Pipes for LED Lightings(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 283. http://dx.doi.org/10.1299/jsmeatem.2015.14.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tushar Shimpi, Palash. "Palash's Law of Fluid Dynamics." International Journal of Science and Research (IJSR) 12, no. 9 (2023): 1097–103. http://dx.doi.org/10.21275/sr23910212852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khare, Prashant. "Fluid Dynamics: Part 1: Classical Fluid Dynamics." Contemporary Physics 56, no. 3 (2015): 385–87. http://dx.doi.org/10.1080/00107514.2015.1048303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raza, Md Shamim, Nitesh Kumar, and Sourav Poddar. "Combustor Characteristics under Dynamic Condition during Fuel – Air Mixingusing Computational Fluid Dynamics." Journal of Advances in Mechanical Engineering and Science 1, no. 1 (2015): 20–33. http://dx.doi.org/10.18831/james.in/2015011003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harlander, Uwe, Andreas Hense, Andreas Will, and Michael Kurgansky. "New aspects of geophysical fluid dynamics." Meteorologische Zeitschrift 15, no. 4 (2006): 387–88. http://dx.doi.org/10.1127/0941-2948/2006/0144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sreenivasan, Katepalli R. "Chandrasekhar's Fluid Dynamics." Annual Review of Fluid Mechanics 51, no. 1 (2019): 1–24. http://dx.doi.org/10.1146/annurev-fluid-010518-040537.

Full text
Abstract:
Subrahmanyan Chandrasekhar (1910–1995) is justly famous for his lasting contributions to topics such as white dwarfs and black holes (which led to his Nobel Prize), stellar structure and dynamics, general relativity, and other facets of astrophysics. He also devoted some dozen or so of his prime years to fluid dynamics, especially stability and turbulence, and made important contributions. Yet in most assessments of his science, far less attention is paid to his fluid dynamics work because it is dwarfed by other, more prominent work. Even within the fluid dynamics community, his extensive rese
APA, Harvard, Vancouver, ISO, and other styles
7

Ushida, Akiomi, Shuichi Ogawa, Tomiichi Hasegawa, and Takatsune Narumi. "OS23-1 Pseudo-Laminarization of Dilute Polymer Solutions in Capillary Flows(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 278. http://dx.doi.org/10.1299/jsmeatem.2015.14.278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Youngho, and Sangho Yun. "Fluid Dynamics in an Anatomically Correct Total Cavopulmonary Connection : Flow Visualizations and Computational Fluid Dynamics(Cardiovascular Mechanics)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 57–58. http://dx.doi.org/10.1299/jsmeapbio.2004.1.57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wood, Heather. "Fluid dynamics." Nature Reviews Neuroscience 6, no. 2 (2005): 92. http://dx.doi.org/10.1038/nrn1613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tran, Cindy. "Fluid Dynamics." Prairie Schooner 97, no. 4 (2023): 17–19. http://dx.doi.org/10.1353/psg.2023.a939791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

REISCH, MARC S. "FLUID DYNAMICS." Chemical & Engineering News 83, no. 8 (2005): 16–18. http://dx.doi.org/10.1021/cen-v083n008.p016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lin, C. T., J. K. Kuo, and T. H. Yen. "Quantum Fluid Dynamics and Quantum Computational Fluid Dynamics." Journal of Computational and Theoretical Nanoscience 6, no. 5 (2009): 1090–108. http://dx.doi.org/10.1166/jctn.2009.1149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nagura, Ryo, Kanji Kawashima, Kentaro Doi, and Satoyuki Kawano. "OS23-3 Observation of Electrically Induced Flows in Highly Polarized Electrolyte Solution(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 280. http://dx.doi.org/10.1299/jsmeatem.2015.14.280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Guardone, Alberto, Piero Colonna, Matteo Pini, and Andrea Spinelli. "Nonideal Compressible Fluid Dynamics of Dense Vapors and Supercritical Fluids." Annual Review of Fluid Mechanics 56, no. 1 (2024): 241–69. http://dx.doi.org/10.1146/annurev-fluid-120720-033342.

Full text
Abstract:
The gas dynamics of single-phase nonreacting fluids whose thermodynamic states are close to vapor-liquid saturation, close to the vapor-liquid critical point, or in supercritical conditions differs quantitatively and qualitatively from the textbook gas dynamics of dilute, ideal gases. Due to nonideal fluid thermodynamic properties, unconventional gas dynamic effects are possible, including nonclassical rarefaction shock waves and the nonmonotonic variation of the Mach number along steady isentropic expansions. This review provides a comprehensive theoretical framework of the fundamentals of no
APA, Harvard, Vancouver, ISO, and other styles
15

YANAGISAWA, Shota, Masaru OGASAWARA, Takahiro ITO, et al. "OS23-11 The Mechanism of Enhancing Pool Boiling Efficiency by Changing Surface Property(Thermo-fluid dynamics(3),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 288. http://dx.doi.org/10.1299/jsmeatem.2015.14.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Thabet, Senan, and Thabit H. Thabit. "Computational Fluid Dynamics: Science of the Future." International Journal of Research and Engineering 5, no. 6 (2018): 430–33. http://dx.doi.org/10.21276/ijre.2018.5.6.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yamaguchi, Yukio, and Kenji Amagai. "OS23-7 Development of Binary Refrigeration System Using CO2 Coolant for Freezing Show Case(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 284. http://dx.doi.org/10.1299/jsmeatem.2015.14.284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wu, Xiang, and Ling Feng Tang. "Review of Coupled Research for Mechanical Dynamics and Fluid Mechanics of Reciprocating Compressor." Applied Mechanics and Materials 327 (June 2013): 227–32. http://dx.doi.org/10.4028/www.scientific.net/amm.327.227.

Full text
Abstract:
Research statuses of mechanical dynamics and fluid mechanics of a reciprocating compressor are reviewed respectively ,along with the presentation of coupled research for these two disciplines of a reciprocating compressor. Analyses for mechanical dynamics are focused on modal analysis and dynamic response analysis. Three methods can be adopted in dynamic response analysis,which are the combination of the formula derivation and finite element method, the combination of multi-rigid-body dynamics and finite element method , and thecombination of multi-flexible body dynamics and finite element met
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Xinjie, Ruochen Wu, Konghui Guo, Piyong Zu, and Mehdi Ahmadian. "Dynamic characteristics of magnetorheological fluid squeeze flow considering wall slip and inertia." Journal of Intelligent Material Systems and Structures 31, no. 2 (2019): 229–42. http://dx.doi.org/10.1177/1045389x19888781.

Full text
Abstract:
Magnetorheological fluid has been investigated intensively nowadays, and magnetorheological fluid shows large force capabilities in squeeze mode with wide application potential such as control valve, engine mounts, and impact dampers. In these applications, magnetorheological fluid is flowing in a dynamic environment due to the transient nature of inputs and system characteristics. Hence, this article undertakes a comprehensive study of magnetorheological fluid squeeze flow dynamics behaviors with wall slip, yield, and inertia. First, the dynamic model with the bi-viscous constitutive of magne
APA, Harvard, Vancouver, ISO, and other styles
20

KAWAMURA, Tetuya, and Hideo TAKAMI. "Computational Fluid Dynamics." Tetsu-to-Hagane 75, no. 11 (1989): 1981–90. http://dx.doi.org/10.2355/tetsutohagane1955.75.11_1981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gilbert, W. M. "Amniotic Fluid Dynamics." NeoReviews 7, no. 6 (2006): e292-e299. http://dx.doi.org/10.1542/neo.7-6-e292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Giga, Yoshikazu, Matthias Hieber, and Edriss Titi. "Geophysical Fluid Dynamics." Oberwolfach Reports 10, no. 1 (2013): 521–77. http://dx.doi.org/10.4171/owr/2013/10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Giga, Yoshikazu, Matthias Hieber, and Edriss Titi. "Geophysical Fluid Dynamics." Oberwolfach Reports 14, no. 2 (2018): 1421–62. http://dx.doi.org/10.4171/owr/2017/23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hjertager, Bjørn. "Engineering Fluid Dynamics." Energies 10, no. 10 (2017): 1467. http://dx.doi.org/10.3390/en10101467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Morishita, Etsuo. "Spreadsheet Fluid Dynamics." Journal of Aircraft 36, no. 4 (1999): 720–23. http://dx.doi.org/10.2514/2.2497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jones, AM, MJ Moseley, SJ Halfmann, et al. "Fluid volume dynamics." Critical Care Nurse 11, no. 4 (1991): 74–76. http://dx.doi.org/10.4037/ccn1991.11.4.74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Czosnyka, Marek, Zofia Czosnyka, Shahan Momjian, and John D. Pickard. "Cerebrospinal fluid dynamics." Physiological Measurement 25, no. 5 (2004): R51—R76. http://dx.doi.org/10.1088/0967-3334/25/5/r01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hibberd, S., and Bhinsen K. Shivamoggi. "Theoretical Fluid Dynamics." Mathematical Gazette 70, no. 454 (1986): 329. http://dx.doi.org/10.2307/3616227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

MIZOTA, Taketo. "Sports Fluid Dynamics." Wind Engineers, JAWE 2001, no. 87 (2001): 37–41. http://dx.doi.org/10.5359/jawe.2001.87_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Acheson, D. J. "Elementary Fluid Dynamics." Journal of the Acoustical Society of America 89, no. 6 (1991): 3020. http://dx.doi.org/10.1121/1.400751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Birchall, D. "Computational fluid dynamics." British Journal of Radiology 82, special_issue_1 (2009): S1—S2. http://dx.doi.org/10.1259/bjr/26554028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Busse, F. H. "Geophysical Fluid Dynamics." Eos, Transactions American Geophysical Union 68, no. 50 (1987): 1666. http://dx.doi.org/10.1029/eo068i050p01666-02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Neilsen, David W., and Matthew W. Choptuik. "Ultrarelativistic fluid dynamics." Classical and Quantum Gravity 17, no. 4 (2000): 733–59. http://dx.doi.org/10.1088/0264-9381/17/4/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Emanuel, George, and Daniel Bershader. "Analytical Fluid Dynamics." Physics Today 47, no. 11 (1994): 92–94. http://dx.doi.org/10.1063/1.2808705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hughes, Dez. "Transvascular fluid dynamics." Veterinary Anaesthesia and Analgesia 27, no. 1 (2000): 63–69. http://dx.doi.org/10.1046/j.1467-2995.2000.00006.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lin, Ching-long, Merryn H. Tawhai, Geoffrey Mclennan, and Eric A. Hoffman. "Computational fluid dynamics." IEEE Engineering in Medicine and Biology Magazine 28, no. 3 (2009): 25–33. http://dx.doi.org/10.1109/memb.2009.932480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lavinio, A., Z. Czosnyka, and M. Czosnyka. "Cerebrospinal fluid dynamics." European Journal of Anaesthesiology 25 (February 2008): 137–41. http://dx.doi.org/10.1017/s0265021507003298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jarvis, P. D., and J. W. van Holten. "Conformal fluid dynamics." Nuclear Physics B 734, no. 3 (2006): 272–86. http://dx.doi.org/10.1016/j.nuclphysb.2005.11.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wrobel, L. C. "Computational fluid dynamics." Engineering Analysis with Boundary Elements 9, no. 2 (1992): 192. http://dx.doi.org/10.1016/0955-7997(92)90070-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pericleous, K. A. "Computational fluid dynamics." International Journal of Heat and Mass Transfer 32, no. 1 (1989): 197–98. http://dx.doi.org/10.1016/0017-9310(89)90105-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Von Wendt, J. "Computational fluid dynamics." Journal of Wind Engineering and Industrial Aerodynamics 40, no. 2 (1992): 223. http://dx.doi.org/10.1016/0167-6105(92)90368-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Maxworthy, Tony. "Geophysical fluid dynamics." Tectonophysics 111, no. 1-2 (1985): 165–66. http://dx.doi.org/10.1016/0040-1951(85)90076-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Skrbek, L., J. J. Niemela, and R. J. Donnelly. "Cryogenic fluid dynamics." Physica B: Condensed Matter 280, no. 1-4 (2000): 41–42. http://dx.doi.org/10.1016/s0921-4526(99)01438-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hamill, Nathalie. "Streamlining Fluid Dynamics." Mechanical Engineering 120, no. 03 (1998): 76–78. http://dx.doi.org/10.1115/1.1998-mar-1.

Full text
Abstract:
More-intuitive pre-processors and advanced solvers are making computational fluid dynamics (CFD) software easier to use, more accurate, and faster. CFD techniques involve the solution of the Navier-Stokes equations that describe fluid-flow processes. Using MSC/ PATRAN as a starting point, AEA Technology plc, Harwell, Oxfordshire, England, has developed a pre-processor for its software that is fully computer-aided design (CAD)-compatible and works with native CAD databases such as CADDS 5, CATIA, Euclid3, Pro /ENG INEER, and Unigraphics. The simplicity of modeling complex geometries in CFX allo
APA, Harvard, Vancouver, ISO, and other styles
45

Lax, Peter D. "Computational Fluid Dynamics." Journal of Scientific Computing 31, no. 1-2 (2006): 185–93. http://dx.doi.org/10.1007/s10915-006-9104-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pitarma, R. A., J. E. Ramos, M. E. Ferreira, and M. G. Carvalho. "Computational fluid dynamics." Management of Environmental Quality: An International Journal 15, no. 2 (2004): 102–10. http://dx.doi.org/10.1108/14777830410523053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fox, Robert. "Information fluid dynamics." OCLC Systems & Services: International digital library perspectives 27, no. 2 (2011): 87–94. http://dx.doi.org/10.1108/10650751111135382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Smalley, Larry L., and Jean P. Krisch. "String fluid dynamics." Classical and Quantum Gravity 13, no. 2 (1996): L19—L22. http://dx.doi.org/10.1088/0264-9381/13/2/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Smalley, L. L., and J. P. Krisch. "String fluid dynamics." Classical and Quantum Gravity 13, no. 5 (1996): 1277. http://dx.doi.org/10.1088/0264-9381/13/5/037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shivamoggi, Bhimsen K., and Stanley A. Berger. "Theoretical Fluid Dynamics." Physics Today 51, no. 11 (1998): 69–70. http://dx.doi.org/10.1063/1.882072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!