Dissertations / Theses on the topic 'Fluid-structure interaction simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Fluid-structure interaction simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Eeg, Thomas Bertheau. "Fluid Structure Interaction Simulation on an Idealized Aortic Arch." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for konstruksjonsteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19319.
Full textSieber, Galina. "Numerical simulation of fluid structure interaction using loose coupling methods." Phd thesis, [S.l. : s.n.], 2002. http://elib.tu-darmstadt.de/diss/000254.
Full textGallagher, Timothy. "Towards multi-scale reacting fluid-structure interaction: micro-scale structural modeling." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53483.
Full textRidzon, Matthew C. "Quantifying Cerebellar Movement With Fluid-Structure Interaction Simulations." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1590752448366714.
Full textYang, Qing. "SPH Simulation of Fluid-Structure Interaction Problems with Application to Hovercraft." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/26785.
Full textPh. D.
Engels, Thomas. "Numerical modeling of fluid-structure interaction in bio-inspired propulsion." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4773/document.
Full textFlying and swimming animals have developed efficient ways to produce the fluid flow that generates the desired forces for their locomotion. These bio-inspired problems couple fluid dynamics and solid mechanics with complex geometries and kinematics. The present thesis is placed in this interdisciplinary context and uses numerical simulations to study these fluid--structure interaction problems with applications in insect flight and swimming fish. Based on existing work on rigid moving obstacles, using an efficient Fourier discretization, a numerical method has been developed, which allows the simulation of flexible, deforming obstacles as well, and provides enhanced versatility and accuracy in the case of rigid obstacles. The method relies on the volume penalization method and the fluid discretization is still based on a Fourier discretization. We first apply this method to insects with rigid wings, where the body and other details, such as the legs and antennae, can be included. After presenting detailed validation tests, we proceed to studying a bumblebee model in fully developed turbulent flow. Our simulations show that turbulent perturbations affect flapping insects in a different way than human-designed fixed-wing aircrafts. While in the latter, upstream perturbations can cause transitions in the boundary layer, the former do not present systematical changes in aerodynamic forces. We conclude that insects rather face control problems in a turbulent environment than a deterioration in force production. In the next step, we design a solid model, based on a one--dimensional beam equation, and simulate coupled fluid--solid systems
Hendry, Stephen R. "Projectile impact of fluid backed metal beams and plates : experiments and numerical simulation." Thesis, University of Aberdeen, 1985. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU356814.
Full textAliabadi, Ardavan. "Numerical simulation of fluid-structure interaction for tilting-disk mechanical heart valves." Thesis, Wichita State University, 2013. http://hdl.handle.net/10057/6803.
Full textThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering
Paik, Kwang Jun. "Simulation of fluid-structure interaction for surface ships with linear/nonlinear deformations." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/569.
Full textRoss, Mike R. "Coupling and simulation of acoustic fluid-structure interaction systems using localized Lagrange multipliers." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3219206.
Full textDoradoux, Adrien. "Simulation numérique d’écoulements diphasiques autour d’un solide mobile." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0582/document.
Full textFictitious domain methods allow to simulate flows around complex and/or moving bodies with simple meshes. The object is "immersed" in a domain that contains fluid and solid volumes. The penalization method, which consists in adding a term in the momentum balance equation, in order to impose the solid velocity, is studied in a first part. Thanks to asymptotic expansions, the order of the error induced by this method is computed for moving bodies. This approach is then coupled with a Vector Penalty Projection scheme that permits to impose the incompressibility constraint. The convergence of the penalized scheme towards the Navier-Stokes equations is established. In a second part, an original approach, able to treat multiphase flowsis presented: the Time and Space Dependent Porosity method. The key idea is to consider the solid as a medium without mass. The discretization of the mass balance equation is modified,so that the total volume occupied by all fluid phases and the solid is equal to the total volume.This method is numerically validated on a set of various test cases including incompressible or compressible single phase flows and two-phase flows
Pittard, Matthew T. "Large eddy simulation based turbulent flow-induced vibration of fully developed pipe flow /." Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd295.pdf.
Full textBadiane, Doudou. "Simulation numérique et étude expérimentale d'un viscosimètre à principe vibrant." Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2057/document.
Full textKnowing the viscosity becomes increasingly a major challenge in leading-edge technologies (biomedical, petrochemical, printing, cosmetic, food industry, etc). This study presents a viscosity sensor based on a thin beam immersed in a newtonian fluid and subjected to transverse vibrations due to an electromechanical excitation system. The damped vibration can be used to evaluate the fluid viscosity and density by measuring the beam’s resonance characteristics (amplitude, frequency). This measurement is done by an electromagnetic feedback circuit. In this work, numerical model and experimental studies of the vibrating viscometer are conducted to better understand the influencing factors of the sensor’s operation. The different investigations carried out in this work are of great importance for the viscometer optimization on one hand. On the other hand, it’s a contribution to all studies dealing with the aspect of fluid-structure-electromagnetism coupling
Doyle, Matthew Gerard. "Simulation of Myocardium Motion and Blood Flow in the Heart with Fluid-Structure Interaction." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20166.
Full textAli, Awais [Verfasser], Michael [Akademischer Betreuer] Schäfer, and Johannes [Akademischer Betreuer] Janicka. "On the Simulation of Turbulent Fluid-Structure Interaction / Awais Ali ; Michael Schäfer, Johannes Janicka." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2017. http://d-nb.info/1125627557/34.
Full textAlimi, Aria [Verfasser]. "Modeling and Numerical Simulation of Fluid-Structure Interaction in Circle of Willis / Aria Alimi." Kassel : Kassel University Press, 2019. http://d-nb.info/1206954078/34.
Full textBloxom, Andrew Lawrence. "Numerical Simulation of the Fluid-Structure Interaction of a Surface Effect Ship Bow Seal." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50592.
Full textPh. D.
Doyle, Matthew G. "Simulation of blood flow in a ventricular assist device with fluid-structure interaction effects." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26630.
Full textKara, Mustafa Can. "Fluid-structure interaction (FSI) of flow past elastically supported rigid structures." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/51931.
Full textAnderson, Peter J. "Modeling the fluid-structure interaction of the upper airway : towards simulation of obstructive sleep apnea." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/50162.
Full textApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Salman, Huseyin Enes. "Investigation Of Fluid Structure Interaction In Cardiovascular System From Diagnostic And Pathological Perspective." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614388/index.pdf.
Full textDeparis, Simone. "Numerical analysis of axisymmetric flows and methods for fluid-structure interaction arising in blood flow simulation /." [S.l.] : [s.n.], 2004. http://library.epfl.ch/theses/?display=detail&nr=2965.
Full textAl-Manthari, Maimouna S. "Numerical simulation of selected two-dimensional and three-dimensional fluid-structure interaction problems using OpenFOAM technology." Thesis, Swansea University, 2018. https://cronfa.swan.ac.uk/Record/cronfa40949.
Full textSourdille, Etienne. "Numerical simulation and control of a fluid structure interaction for a plate in a transverse flow." Thesis, University of Southampton, 2006. https://eprints.soton.ac.uk/47114/.
Full textHermange, Corentin. "Simulation des interactions fluide-structure dans le problème de l’aquaplaning." Thesis, Ecole centrale de Nantes, 2017. http://www.theses.fr/2017ECDN0014/document.
Full textThe aquaplaning problem has been the topic of simulation works emphasizing its complexity: fluid structure interactions, structures modelling, materials involved, contact with asphalt and the complexity of the resulting fluid flow (extremely complex interface, drying up the road, ventilation, possible development of turbulence and cavitation). As additional difficulty, the tire is a highly deformable body and fluid-structure interaction effects should be considered, leading to a challenging problem for the numerical modelling. Then Michelin, Ecole Centrale Nantes and NextFlow Software have recently tested the ability of the SPH solver developed by the two latter to classify tires based on their surface structure geometries, without considering the gas phase. In this context, the interest of SPH for modelling efficiently the aquaplaning flow has been underlined. The meshless and Lagrangian feature of SPH naturally avoid the problem of fluid/solid grid compatibility. The other significant advantage of the SPH method, in this context, appears in its ability to be relatively easily coupled to with conventional Finite Element solvers. The aim of this workis three fold. First, qualify the SPH-FE coupling strategy, especially in terms of energy and then develop schemes to ensure a good compromise among stability, accuracy and computation time. Second, quantify the influence of different involved physical phenomena to determine which should be modelled. Finally, adapt SPH models to simultaneously consider different phenomena and to performe simulations of the complete problem
Oliveira, Iago Lessa [UNESP]. "Using foam-extend to assess the influence of fluid-structure interaction on the rupture of intracranial aneurysms." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151490.
Full textApproved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-08-30T18:14:48Z (GMT) No. of bitstreams: 1 oliveira_il_me_ilha.pdf: 29141101 bytes, checksum: ffe8861f2f133bd987d688271ac0ef4b (MD5)
Made available in DSpace on 2017-08-30T18:14:48Z (GMT). No. of bitstreams: 1 oliveira_il_me_ilha.pdf: 29141101 bytes, checksum: ffe8861f2f133bd987d688271ac0ef4b (MD5) Previous issue date: 2017-08-24
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Les anévrismes sont des anomalies formées sur certaines régions du système vasculaire humain et sont caractérisés par des régions dilatées de la paroi artérielle, avec une petite épaisseur. L’un des types les plus communs se produit à l’intérieur des artères de la base du cerveau, dans le cercle de Willis. Ces cas d’anévrismes intracrâniens sont extrêmement dangereux car ils peuvent provoquer une hémorragie sous-arachnoïdienne en cas de rupture, avec la mort ou la présence d’un dommage définitif pour le patient. Les causes d’anévrismes sont étudiées depuis longtemps et des recherches reconnaissent que les effets hémodynamiques jouent un rôle clé dans la formation, la croissance, et la rupture des anévrismes intracrâniens. Cependant, les procédures expérimentales pour mieux comprendre les caractéristiques de l’écoulement du sang dans l’anévrisme sont encore difficiles à réaliser. Avec le développement de techniques des images du système vasculaire cérébral, il a été possible d’obtenir la géométrie des anévrismes, donc des méthodes numériques ont commencé à être utilisées pour la solution de l’écoulement dans les anévrismes, et alors plusieurs recherches ont étudié l’influence des variables biologiques et hémodynamiques sur la rupture de l’anévrisme. Cependant, ce n’est que dans la dernière décennie que l’influence de l’interaction fluide-structure, due à la flexibilité de la paroi de l’artère, sur ces variables a été étudiée. Dans ce contexte et à l’aide de géométries d’anévrismes spécifiques des patients, des simulations numériques ont été effectuées avec le logiciel open-source foam-extend, qui utilise une méthodologie partitionnée pour résoudre numériquement le problème d’interaction fluide-structure. En comparant les paramètres qui peuvent conduire à la rupture – tels que le cisaillement sur la paroi et l’indice d’oscillation du cisaillement – entre les résultats des simulations avec l’hypothèse de la paroi rigide et élastique, nous avons évalué l’influence de la flexibilité de la paroi de l’anévrisme sur ces paramètres, en concluant que cette flexibilité change les valeurs de ces paramètres, donc l’option de traitement peut changer si le médecin les utilise pour décider de traiter le patient.
Aneurismas são anormalidades formadas em algumas partes do sistema vascular humano e se caracterizam por regiões dilatadas e finas da parede arterial. Um dos tipos mais comuns ocorre no interior das artérias que chegam ao cérebro, no chamado círculo de Willis. Estes casos de aneurismas intracranianos são extremamente perigosos, pois em caso de rompimento podem ocasionar hemorragia cerebral, com consequente morte ou presença de sequelas permanentes no paciente. As causas dos aneurismas vêm sendo investigadas há tempos, e os pesquisadores concordam que os fenômenos hemodinâmicos têm papel fundamental na formação, crescimento e ruptura do aneurisma cerebral. Entretanto, os procedimentos experimentais para se conhecer melhor as características do escoamento de sangue no interior do aneurisma ainda são de difícil realização. A partir do desenvolvimento de técnicas de mapeamento do sistema vascular cerebral, pôde-se obter a geometria de aneurismas de modo que métodos numéricos na solução de problemas de escoamento passaram a ser utilizados. A partir de então, diversas pesquisas vêm sendo feitas visando a investigação da influência das variáveis biológicas e hemodinâmicas na ruptura do aneurisma. Entretanto, apenas recentemente foi dado foco na influência da interação fluido-estrutura que existe neste problema, devido a flexibilidade da parede da artéria. Assim, usando geometrias de aneurismas específicos de pacientes, simulamos o escoamento sanguíneo utilizando o pacote open-source foam-extend, que possui uma metodologia particionada implementada para resolver numericamente o problema de interação fluido-estrutura. Através de comparação dos parâmetros que podem levar a ruptura -- tensão de cisalhamento na parede e índice de oscilação do cisalhamento -- entre os resultados das simulações considerando as hipóteses de parede rígida e flexível, avaliamos a influência da flexibilidade da parede em tais parâmetros, concluindo que tal flexibilidade tem influência nos parâmetros que podem levar à ruptura do aneurisma a ponto de alterar a decisão de tratamento, caso ela fosse feita baseada em tais parâmetros.
Aneurysms are abnormalities formed in some regions of the human vascular system and are characterized by dilated and thin regions of the arterial wall. One of the most common types occurs inside the brain arteries in the so-called circle of Willis. These intracranial aneurysms are extremely dangerous, because in case of rupture they can cause sub-arachnoid hemorrhage, with consequent death or presence of permanent damage to the patient. Causes of aneurysms have been investigated for a long time, and researchers agree that hemodynamic effects play a key role in the formation, growth, and rupture of brain aneurysms. However, the experimental procedures to better understand the characteristics of blood flow within the aneurysm are still difficult to perform. With the development of scanning techniques of the cerebral vascular system, it has been possible to obtain the geometry of aneurysms and then with that numerical methods for the solution of blood flow have begun to be used. Since then, several researchers have been investigating the influence of biological and hemodynamic variables on aneurysms rupture. However, it has been only in the last decade that the influence of fluid-structure interaction, due to the flexibility of the artery wall, on those variables has been investigated. In this context and using patient-specific aneurysm geometries, we simulated the blood flow using the opensource library foam-extend, which uses a partitioned methodology to numerically solve the fluid-structure interaction problem. By comparing the parameters that can lead to rupture – wall shear stress and oscillatory shear index – between the results of the simulations considering the rigid and flexible walls hypotheses, we evaluated the influence of wall flexibility on such parameters, concluding that the flexibility influences the parameters that can lead to rupture, changing the decision of treatment if made using those parameters.
Oliveira, Iago Lessa. "Using foam-extend to assess the influence of fluid-structure interaction on the rupture of intracranial aneurysms /." Ilha Solteira, 2017. http://hdl.handle.net/11449/151490.
Full textResumo: Aneurismas são anormalidades formadas em algumas partes do sistema vascular humano e se caracterizam por regiões dilatadas e finas da parede arterial. Um dos tipos mais comuns ocorre no interior das artérias que chegam ao cérebro, no chamado círculo de Willis. Estes casos de aneurismas intracranianos são extremamente perigosos, pois em caso de rompimento podem ocasionar hemorragia cerebral, com consequente morte ou presença de sequelas permanentes no paciente. As causas dos aneurismas vêm sendo investigadas há tempos, e os pesquisadores concordam que os fenômenos hemodinâmicos têm papel fundamental na formação, crescimento e ruptura do aneurisma cerebral. Entretanto, os procedimentos experimentais para se conhecer melhor as características do escoamento de sangue no interior do aneurisma ainda são de difícil realização. A partir do desenvolvimento de técnicas de mapeamento do sistema vascular cerebral, pôde-se obter a geometria de aneurismas de modo que métodos numéricos na solução de problemas de escoamento passaram a ser utilizados. A partir de então, diversas pesquisas vêm sendo feitas visando a investigação da influência das variáveis biológicas e hemodinâmicas na ruptura do aneurisma. Entretanto, apenas recentemente foi dado foco na influência da interação fluido-estrutura que existe neste problema, devido a flexibilidade da parede da artéria. Assim, usando geometrias de aneurismas específicos de pacientes, simulamos o escoamento sanguíneo utilizando o pacote open-source... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Aneurysms are abnormalities formed in some regions of the human vascular system and are characterized by dilated and thin regions of the arterial wall. One of the most common types occurs inside the brain arteries in the so-called circle of Willis. These intracranial aneurysms are extremely dangerous, because in case of rupture they can cause sub-arachnoid hemorrhage, with consequent death or presence of permanent damage to the patient. Causes of aneurysms have been investigated for a long time, and researchers agree that hemodynamic effects play a key role in the formation, growth, and rupture of brain aneurysms. However, the experimental procedures to better understand the characteristics of blood flow within the aneurysm are still difficult to perform. With the development of scanning techniques of the cerebral vascular system, it has been possible to obtain the geometry of aneurysms and then with that numerical methods for the solution of blood flow have begun to be used. Since then, several researchers have been investigating the influence of biological and hemodynamic variables on aneurysms rupture. However, it has been only in the last decade that the influence of fluid-structure interaction, due to the flexibility of the artery wall, on those variables has been investigated. In this context and using patient-specific aneurysm geometries, we simulated the blood flow using the opensource library foam-extend, which uses a partitioned methodology to numerically solve the ... (Complete abstract click electronic access below)
Résumé: Les anévrismes sont des anomalies formées sur certaines régions du système vasculaire humain et sont caractérisés par des régions dilatées de la paroi artérielle, avec une petite épaisseur. L’un des types les plus communs se produit à l’intérieur des artères de la base du cerveau, dans le cercle de Willis. Ces cas d’anévrismes intracrâniens sont extrêmement dangereux car ils peuvent provoquer une hémorragie sous-arachnoïdienne en cas de rupture, avec la mort ou la présence d’un dommage définitif pour le patient. Les causes d’anévrismes sont étudiées depuis longtemps et des recherches reconnaissent que les effets hémodynamiques jouent un rôle clé dans la formation, la croissance, et la rupture des anévrismes intracrâniens. Cependant, les procédures expérimentales pour mieux comprendre les caractéristiques de l’écoulement du sang dans l’anévrisme sont encore difficiles à réaliser. Avec le développement de techniques des images du système vasculaire cérébral, il a été possible d’obtenir la géométrie des anévrismes, donc des méthodes numériques ont commencé à être utilisées pour la solution de l’écoulement dans les anévrismes, et alors plusieurs recherches ont étudié l’influence des variables biologiques et hémodynamiques sur la rupture de l’anévrisme. Cependant, ce n’est que dans la dernière décennie que l’influence de l’interaction fluide-structure, due à la flexibilité de la paroi de l’artère, sur ces variables a été étudiée. Dans ce contexte et à l’aide de géométries d’anévri... (Résumé complet accès életronique ci-dessous)
Mestre
Mosquera, Michaelsen Pablo [Verfasser], and M. [Akademischer Betreuer] Gabi. "A Fluid-Structure-Interaction Simulation tool for application in rotating machinery / Pablo Mosquera Michaelsen. Betreuer: M. Gabi." Karlsruhe : KIT-Bibliothek, 2015. http://d-nb.info/1078420688/34.
Full textBlauert, Florian [Verfasser], and H. [Akademischer Betreuer] Horn. "Investigating biofilm deformation using optical coherence tomography and fluid-structure interaction simulation / Florian Blauert ; Betreuer: H. Horn." Karlsruhe : KIT-Bibliothek, 2017. http://d-nb.info/1132997801/34.
Full textGaugain, Fabien. "Analyse expérimentale et simulation numérique de l’interaction fluide-structure d’un hydrofoil élastique en écoulement subcavitant et cavitant." Thesis, Paris, ENSAM, 2013. http://www.theses.fr/2013ENAM0054/document.
Full textThe design of flexible lifting bodies in the naval industry, such as propelleror rudders, create some new design problems. This thesis proposes a numerical method validated by experimental comparison for solving the case of lifting bodies loaded by flow with or whitout cavitation. The tests are carried out in the hydrodynamic tunnel of the French Naval Academy Research Institute, on a polyacetate flexible hydrofoil NACA66-312 (mod.). During tests, strains and vibrations are measured for comparisons with numerical results. The numerical method uses a sequential synchrone iterative partitionned coupling betweena structural finite-element code (ANSYS Mechanical) and a finite-volume code (ANSYS CFX). Good agreement between numerical and experimental results for displacements, and stresses of the structure is highlighted. For the cavitating flow, a good agreement for the cavitation dynamic is observed and the stresses are evaluated with satisfying accuracy
Benguigui, William. "Modélisation de la réponse dynamique d’une paroi solide mise en vibration par un écoulement fluide diphasique." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLY014/document.
Full textIn nuclear power plants, steam generator tubes vibrate because of steam/water cross-flows. In order to understant this phenomenon, reduced-scale experiments are performed. Numerical simulations have shown their ability to accurately reproduce the vibration induced by a single phase flow in a tube bundle. The aim of the present work is to do the same with two-phase flow and to characterize the effect of the mixture physical properties on vibration.To do so, a CFD code based on a two-fluid approach is used. A "discrete forcing" method is implemented in order to allow solid body motion in a two-phase flow. The validation is performed with simple and industrial cases using experimental and theoretical results.Using an existing implicit algorithm, a fluid-structure coupling based on the developed interface tracking method is implemented. Validated for single and two-phase flows, it is now possible to have solid motion induced by fluid forces.The different numerical models dedicated to two-phase flows are then evaluated on a freon/freon flow across an inclined tube bundle. The use of a multi-regime model is required. In order to investigate the role of the different physical properties on the vibration, three simple studies are performed.Finally, the industrial application, a freon/water flow across a square pitch tube bundle, is performed. First, it is compared to a steam/water flow in order to characterize the discrepancies when we are using a modeling mixture. Then, the vibration induced by single- and two-phase flows is reproduced by the developed method on feasibility test cases
Partimbene, Vincent. "Calcul haute performance pour la simulation d'interactions fluide-structure." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/20524/1/PARTIMBENE_Vincent.pdf.
Full textNdiaye, Moctar. "Stabilisation et simulation de modèles d'interaction fluide-structure." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30323/document.
Full textThe aim of this thesis is to study the stabilization of fluid-structure interaction models by finite dimensional controls acting at the boundary of the fluid domain. The fluid flow is described by the incompressible Navier-Stokes equations while the displacement of the structure, localized at the boundary of the fluid domain, satisfies a damped Euler-Bernoulli beam equation. First, we study the case where the control is a Dirichlet boundary condition in the fluid equations (control by suction/blowing). We obtain local feedback stabilization results around an unstable stationary solution of this system. Chapters 2 and 3 are devoted to the case where control is a force applied to the structure (control by boundary deformation). We consider, in chapter 2, a simplified model where the Euler-Bernoulli equation for the structure is replaced by a system of finite dimension. We construct feedback control laws for the infinite dimensional systems, or for their semi-discrete approximations, able to stabilize the linearized systems with a prescribed exponential decay rate, and locally the nonlinear systems. We present some numerical results showing the efficiency of the feedback laws
Wick, Thomas [Verfasser], and Rolf [Akademischer Betreuer] Rannacher. "Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics / Thomas Wick ; Betreuer: Rolf Rannacher." Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179783395/34.
Full textBruckner, Robert Jack. "Simulation and Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings." Case Western Reserve University School of Graduate Studies / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=case1089304186.
Full textBen, Ayed Samah. "Analysis, Simulation and Control of Peak Pressure Loads on Low-Rise Structures." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23671.
Full textIn the first part, we use a probabilistic approach to characterize peak loads as measured on a subject house during Hurricane Ivan on 2004. Time series of pressure coefficients collected on the roof of that house are analyzed. Rather than using peak values, which could vary due to the stochastic nature of the data, a probabilistic analysis is used to determine the probability of non-exceedence of specific values of pressure coefficients and associated wind loads. The results show that the time series of the pressure coefficients follow a three-parameter Gamma distribution, while the peak pressure follows a two-parameter Gumbel distribution. The results of the analysis are contrasted with the design values.
In the second part, we perform numerical simulations of the flow over a surface-mounted prism as a simplified example for the flow over a low-rise structure. A Direct Numerical Simulation (DNS) code is developed to solve the unsteady two-dimensional incompressible Navier-Stokes equations of the flow past the prism. The pressure coefficients are then computed on the prism surface in order to assess the wind loads. The code is written on a parallel platform using the Message Passing Interface (MPI) library. We use the simulations to study the effects of inflow disturbances on the extreme loads on structures. The sensitivities of peak loads on a surface mounted prism to variations in incident gust parameters are determined. Latin Hypercube Sampling (LHS) is applied to obtain different combinations of inflow parameters. A non-intrusive polynomial chaos expansion is then applied to determine the sensitivities. The results show that the gust enhances the destabilization of the separation shear layer, forces it to break down and moves it closer to the roof of the prism. As for the sensitivities, the results show that the extreme loads are most sensitive to the transverse amplitude of the disturbance.
Because the separated flow over sharp edges is responsible for the extreme pressure peaks, we investigate the use of active and passive control strategies to reduce wind loads. The studied active flow control strategies include blowing, suction, and synthetic jets. We implement them by using different flux injections, different slot locations and different angles. Investigation of the possible peak pressure reduction for two Reynolds numbers is performed. For Re = 1000, a reduction by nearly 50% of the peak pressure is obtained. For Re = 10, 000, the highest achieved reduction is nearly 25%. For passive control, we mount a flexible membrane on the top of the prism. In a two-dimensional framework, the membrane equation is modeled by a forced string equation. This mechanical equation is coupled with the DNS solver and integrated in time using a fourth order Hamming predictor corrector scheme. The results show that this strategy is as efficient as the active control approach, in terms of reducing extreme loads, for Re = 10, 000.
Ph. D.
Pittard, Matthew Thurlow. "Large Eddy Simulation Based Turbulent Flow-induced Vibration of Fully Developed Pipe Flow." Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd295.pdf.
Full textHartig, Maximilian [Verfasser], and T. [Akademischer Betreuer] Schulenberg. "Numerical Simulation of Fluid-Structure Interaction during the Expansion Phase in Sodium Cooled Fast Reactors / Maximilian Hartig ; Betreuer: T. Schulenberg." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/120047130X/34.
Full textTaraconat, Pierre. "Application of numerical simulation for a better characterization of red blood cells by impedance measurement." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS006.
Full textIn Coulter counters, cells counting and volumetry is achieved by monitoring their electrical print when they flow through a polarized micro-orifice.However, the volume measurement may be impaired when the trajectory of the cell is in the vicinity of the aperture edges due to complex dynamics and deformations of the cell.In this thesis, numerical simulations of the dynamics and electrical signature of red blood cells (RBCs) in a Coulter counter are presented, accounting for the deformability of the cells.In particular, a specific numerical pipeline is developed to overcome the challenge of the multi-scale nature of the problem.It consists in segmenting the whole computation of the cell dynamics and electrical response in a series of dedicated computations, with a saving of one order of magnitude in computational time.This numerical pipeline is used with rigid spheres and deformable red blood cells in an industrial Coulter counter geometry and compared with experimental measurements.The simulations not only reproduce electrical signatures typical of those measured experimentally, but also provide an understanding of the key mechanisms at play in the complex signatures induced by RBCs following a near-wall trajectory.Based on this new understanding provided by numerical simulations, a filtering strategy is introduced, which allows the filtering of pulses induced by near-wall paths which are irrelevant for the cells sizing.The method is shown to retrieve the expected symmetrical distribution of RBCs and provides results comparable to hydrodynamical focusing, a more intricate implementation of the Coulter principle.Such a result paves the way for a robust assessment of haematological parameters with a cheaper and simpler implementation, compared to hydrofocused devices.The impact of the cell morphology and rheology on the electrical print is evidenced for near-wall trajectories.Indeed, by altering the cell deformability and sphericity, the electrical pulses are proven to differ from predefined normality of measurements.Furthermore, neural network modellings are performed in the aims of assessing such RBC properties.Among the proposed processing, classification of normal, stiffened and spherical RBCs is provided.Finally, the inverse problem of numerical simulations is achieved, thus allowing the evaluation of the mechanical parameters of RBCs
Kondratyuk, Anastasia [Verfasser], Michael [Akademischer Betreuer] Schäfer, and Suad [Akademischer Betreuer] Jakirlić. "Investigation of the Very Large Eddy Simulation Model in the Context of Fluid-Structure Interaction / Anastasia Kondratyuk ; Michael Schäfer, Suad Jakirlic." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2017. http://d-nb.info/1135385971/34.
Full textMarcel, Thibaud. "Simulation numérique et modélisation de la turbulence statistique et hybride dans un écoulement de faisceau de tubes à nombre de Reynolds élevé dans le contexte de l'interaction fluide-structure." Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0109/document.
Full textThe prediction of fluid-elastic instabilities that develop in a tube bundle is of major importance for the design of modern heat exchangers in nuclear reactors, to prevent accidents associated with such instabilities. The fluid-elastic instabilities, or flutter, cause material fatigue, shocks between beams and damage to the solid walls. These issues are very complex for scientific applications involving the nuclear industry. This work is a collaboration between EDF, CEA and IMFT. It aims to improve the numerical simulation of the fluid-structure interaction in the tube bundle, in particular in the range of critical parameters contribute to the onset of damping negative system and the fluid-elastic instability
Deborde, Julien. "Modélisation et simulation de l’interaction fluide-structure élastique : application à l’atténuation des vagues." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0606/document.
Full textA fully Eulerian method is developed to solve the problem of fluid-elastic structure interactionsbased on a 1-fluid method. The interface between the fluid and the elastic structureis captured by a level set function, advected by the fluid velocity and solved with a WENO5 scheme. The elastic deformations are computed in an Eulerian framework thanks to thebackward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic modelsand the elastic forces are incorporated as a source term in the incompressible Navier-Stokesequations. The velocity/pressure coupling is solved with a pressure-correction methodand the equations are discretized by finite volume schemes on a Cartesian grid. The maindifficulty resides in that large deformations in the fluid cause numerical instabilities. Inorder to avoid these problems, we use a re-initialization process for the level set and linearextrapolation of the backward characteristics. First, we verify and validate our approachon several test cases, including the benchmark of FSI proposed by Turek. Next, we applythis method to study the wave damping phenomenon which is a mean to reduce thewaves impact on the coastline. So far, to our knowledge, only simulations with rigid orone dimensional elastic structure has been studied in the literature. We propose to placeelastic structures on the seabed and we analyse their capacity to absorb the wave energy
Jedouaa, Meriem. "Une méthode efficace de capture d'interface pour la simulation de suspensions d'objets rigides et de vésicules immergées dans un fluide." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM042/document.
Full textIn this work, we propose a method to efficiently capture an arbitrary number of fluid/solid or fluid/fluid interfaces, in a level-set framework. This technique, borrowed from image analysis, is introduced in the context of the interaction of several bodies immersed in a fluid. A configuration of the bodies in the fluid/structure domain is described by three label maps providing the first and second neighbours, and their associated distance functions. Only one level set function captures the union of all interfaces and is transported with the fluid velocity or with a global velocity field which takes into account the velocity of each structure. A multi-label fast marching method is then performed in a narrow-band around the interfaces allowing to update the label and distance functions. Within this framework, the numerical treatment of contacts between the structures is achieved by a short-range repulsive force depending on the distance between the closest bodies.The method is validated through the simulation of a dense suspension of rigid bodies immersed in an incompressible fluid. A global penalization model uses the label maps to follow the solid bodies altogether without a separate computation of each body velocity. Consequently, the method shows its efficiency when dealing with a large number of rigid bodies. We also investigate the numerical simulation of vesicle suspensions for which a computation of elastic and bending forces on membranes is required. In the present model, only one elastic and bending force is computed for the whole set of membranes according to the level set function and the label maps
Kemp, Iain Henry. "Development,testing and fluid interaction simulation of a bioprosthetic valve for transcatheter aortic valve implantation." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71710.
Full textENGLISH ABSTRACT: Bioprosthetic heart valves (BHVs) for transcatheter aortic valve implantation (TAVI) have been rapidly developing over the last decade since the first valve replacement using the TAVI technique. TAVI is a minimally invasive valve replacement procedure offering lifesaving treatment to patients who are denied open heart surgery. The biomedical engineering research group at Stellenbosch University designed a 19 mm balloon expandable BHV for TAVI in 2007/8 for testing in animal trials. In the current study the valve was enlarged to 23 mm and 26 mm diameters. A finite element analysis was performed to aid in the design of the stents. New stencils were designed and manufactured for the leaflets using Thubrikar‟s equations as a guide. The 23 mm valve was manufactured and successfully implanted into two sheep. Fluid structure interaction (FSI) simulations constitute a large portion of this thesis and are being recognized as an important tool in the design of BHVs. Furthermore, they provide insight into the interaction of the blood with the valve, the leaflet dynamics and valve hemodynamic performance. The complex material properties, pulsating flow, large deformations and coupling of the fluid and the physical structure make this one of the most complicated and difficult research areas within the body. The FSI simulations, of the current valve design, were performed using a commercial programme called MSC.Dytran. A validation study was performed using data collected from a cardiac pulse duplicator. The FSI model was validated using leaflet dynamics visualisation and transvalvular pressure gradient comparison. Further comparison studies were performed to determine the material model to be used and the effect of leaflet free edge length and valve diameter on valve performance. The results from the validation study correlated well, considering the limitations that were experienced. However, further research is required to achieve a thorough validation. The comparative studies indicated that the linear isotropic material model was the most stable material model which could be used to simulate the leaflet behaviour. The free edge length of the leaflet affects the leaflet dynamics but does not greatly hinder its performance. The hemodynamic performance of the valve improves with an increase in diameter and the leaflet dynamics perform well considering the increased surface area and length. Many limitations in the software prevented more accurate material models and flow initiation to be implemented. These limitations significantly restricted the research and confidence in the results. Further investigation regarding the implementation of FSI simulations of a heart valve using the commercial software is recommended.
AFRIKAANSE OPSOMMING: Bio-prostetiese hartkleppe (Bioprosthetic Heart Valves - BHVs) wat gebruik word vir transkateter aortaklep-inplantings (Transcatheter Aortic Valve Implantation - TAVI) het geweldig vinnige ontwikkeling getoon in die afgelope tien jaar sedert die eerste klepvervanging wat van die TAVI prosedure gebruik gemaak het. TAVI is ʼn minimaal indringende klepvervangingsprosedure wat lewensreddende behandeling bied aan pasiënte wat ope-hart sjirurgie geweier word. Die Biomediese Ingenieurswese Navorsingsgroep (BERG) by Stellenbosch Universiteit het in 2007/8 ʼn 19 mm ballon-uitsetbare BHV vir TAVI ontwerp vir eksperimente met diere, en hierdie tesis volg op die vorige projekte. In die huidige studie is die klep vergroot na 23 mm en 26 mm in deursnee. ʼn Eindige element analise is gedoen om by te dra tot die ontwerp van die rekspalke vir die klep. Nuwe stensils is ontwerp en vervaardig vir die klepsuile, deur gebruik te maak van Thubrikar se vergelykings. Die 23 mm klep is vervaardig en suksesvol in twee skape ingeplant. Vloeistruktuur interaksie (Fluid Structure Interaction (FSI)) simulasies vorm ‟n groot deel van die tesis en word gesien as ʼn noodsaaklike hulpmiddel in die ontwerp van BHVs. Die simulasies verskaf ook insig in die interaksie van die bloed met die klep, die klepsuil-dinamika en die klep se hemodinamiese werkverrigting. Die komplekse materiaal eienskappe, polsende vloei, grootskaalse vervorming, die verbinding van die vloeistof en die fisiese struktuur maak van hierdie een van die mees gekompliseerde voorwerpe om te simuleer. Die FSI simulasies van die huidige ontwerp, is uitgevoer deur van kommersiële sagteware, MSC.Dytran, gebruik te maak. ʼn Geldigheidstudie wat data gebruik het vanaf die hartklop-nabootser, is uitgevoer. Die FSI model word geverifieer deur klepsuil dinamika visualisering en ʼn vergelyking van die drukgradiënt gebruik te maak. Verdere vergelykende studies is uitgevoer om te bepaal watter materiaal model om te gebruik, asook die uitwerking van die klepsuil-vrye rand en klepdeursnee op die klep se werkverrigting. Die resultate van die studie korreleer goed, in ag genome die beperkings wat ervaar is. Verdere navorsing is egter nodig vir ʼn volledige geldigheidstudie. Vergelykende studies het getoon dat die liniêre isotropiese materiaalmodel die meer stabiele materiaalmodel is wat kan gebruik word om klepsuilgedrag te simuleer. Die vrye-rand lengte van die klepsuil affekteer die dinamika van die klepsuil, maar belemmer nie die werkverrigting grootliks nie. Die hemodinamiese werkverrigting van die klep verbeter met die toename in deursnee en die klepsuil-dinamika vertoon goed in ag genome die verhoogde oppervlak area en lengte. Die vele beperkings in die sagteware het die implementering van meer akkurate materiaalmodelle verhoed. Hierdie beperkings het ʼn verminderde vertroue in die resultate tot gevolg gehad. Verdere ondersoek rakende die implementering van die FSI simulasies van ʼn hartklep deur kommersieel beskikbare sagteware te gebruik, word aanbevel.
Touboul, Eric. "Simulation numérique tridimensionnelle d'un problème de fracturation hydraulique." Ecully, Ecole centrale de Lyon, 1986. http://www.theses.fr/1986ECDL0004.
Full textPauthenet, Martin. "Macroscopic model and numerical simulation of elastic canopy flows." Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0072/document.
Full textWe study the turbulent flow of a fluid over a canopy, that we model as a deformable porous medium. This porous medium is more precisely a carpet of fibres that bend under the hydrodynamic load, hence initiating a fluid-structure coupling at the scale of a fibre's height (honami). The objective of the thesis is to develop a macroscopic model of this fluid-structure interaction in order to perform numerical simulations of this process. The volume averaging method is implemented to describe the large scales of the flow and their interaction with the deformable porous medium. An hybrid approach is followed due to the non-local nature of the solid phase; While the large scales of the flow are described within an Eulerian frame by applying the method of volume averaging, a Lagrangian approach is proposed to describe the ensemble of fibres. The interface between the free-flow and the porous medium is handle with a One-Domain- Approach, which we justify with the theoretical development of a mass- and momentum- balance at the fluid/porous interface. This hybrid model is then implemented in a parallel code written in C$++$, based on a fluid- solver available from the \openfoam CFD toolbox. Some preliminary results show the ability of this approach to simulate a honami within a reasonable computational cost. Prior to implementing a macroscopic model, insight into the small-scale is required. Two specific aspects of the small-scale are therefore studied in details; The first development deals with the inertial deviation from Darcy's law. A geometrical parameter is proposed to describe the effect of inertia on Darcy's law, depending on the shape of the microstructure of the porous medium. This topological parameter is shown to efficiently characterize inertia effects on a diversity of tested microstructures. An asymptotic filtration law is then derived from the closure problem arising from the volume averaging method, proposing a new framework to understand the relationship between the effect of inertia on the macroscopic fluid-solid force and the topology of the microstructure of the porous medium. A second research axis is then investigated. As we deal with a deformable porous medium, we study the effect of the pore-scale fluid-structure interaction on the filtration law as the flow within the pores is unsteady, inducing time-dependent fluidstresses on the solid- phase. For that purpose, we implement pore-scale numerical simulations of unsteady flows within deformable pores, focusing for this preliminary study on a model porous medium. Owing to the large displacements of the solid phase, an immersed boundary approach is implemented. Two different numerical methods are compared to apply the no-slip condition at the fluid-solid interface: a diffuse interface approach and a sharp interface approach. The objective is to find the proper method to afford acceptable computational time and a good reliability of the results. The comparison allows a cross-validation of the numerical results, as the two methods compare well for our cases. This numerical campaign shows that the pore-scale deformation has a significant impact on the pressure drop at the macroscopic scale. Some fundamental issues are then discussed, such as the size of a representative computational domain or the form of macroscopic equations to describe the momentum transport within a soft deformable porous medium
Boëdec, Gwenn. "Modélisation d'une vésicule sous forçage hydrodynamique." Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30025.
Full textVesicles are drops of radius of a few tens micrometers, bounded by an impermeable lipidmembrane of approximately 4 nm thickness, and embedded in an external viscous fluid. Thevesicle membrane is an original system from the mechanical point of view : it presents bothincompressible fluid properties (the lipids can flow freely along the membrane, but membraneis incompressible locally) and solid properties (the membrane resists to bending). The specificproperties of the membrane make the system very deformable and very constrained at the sametime.This manuscript deals with the modelisation of a vesicle subjected to external stresses of hydrodynamical origin, in the Stokes regime. A particular attention is paid to the situation of asettling vesicle. This situation is studied analytically in the small deformation regime. It is foundthat several families of non-trivial stationnary shapes exist, owing to the specific properties ofthe membrane. The study of a settling vesicle is pursued by the development of a numerical codeable to deal with large deformations. Original numerical methods are developped to deal with thecomputation of the bending and with the surface incompressibility constraint. This code permitsto study the formation of tether at the rear of a settling vesicle. These tethers are thin (typicalaspect ratio : length/radius ∼ 100) cylinders of membrane connected to the original vesicle. Itis shown that these tethered shapes are stationary shapes. A theoretical model is proposed andcompared to numerical simulations. This model shows the particular importance of tension inthese shapes. A mechanical modelling based on a curved Cosserat surface is also presented, andpermits to identify the bending contribution to the stress tensor. This contribution is a salientingredient to understand tethered shapes
Razzaq, Mudassar Verfasser], Stefan [Akademischer Betreuer] Turek, and Heribert [Akademischer Betreuer] [Blum. "Finite element simulation techniques for incompressible fluid structure interaction with applications to bioengineering and optimization / Mudassar Razzaq. Betreuer: Stefan Turek. Gutachter: Heribert Blum." Dortmund : Universitätsbibliothek Dortmund, 2011. http://d-nb.info/1096224798/34.
Full textLi, Zhe. "Développement d'une méthode de simulation de couplage fluide-structure à l'aide de la méthode SPH." Thesis, Ecully, Ecole centrale de Lyon, 2013. http://www.theses.fr/2013ECDL0036/document.
Full textThe Fluid-Structure Interaction (FSI) effects are of great importance for many multi-physical problems in academic researches as well as in engineering sciences. Various types of numerical simulation approaches may be used to investigate the FSI problems in order to get more reliable conception and to avoid unexpected disasters. In this work, the fluid sub-domain is simulated by a hybrid mesh-less method (SPH-ALE), and the structure is discretized by the Finite Element (FE) method. As the fluid is considered as a set of particles, one can easily track the fluid structure interface. An energy-conserving coupling strategy is proposed for transient fluid-structure interaction problems where different time integrators are used for each sub-domain: 2nd order Runge-Kutta scheme for the fluid and Newmark time integrator for the solid. By imposing a normal velocity constraint condition at the interface, this proposed coupling method ensures that neither energy injection nor energy dissipation will occur at the interface so that the interface energy is rigorously zero during the whole period of numerical simulation. This coupling method thus ensures that the coupling simulation shall be stable in time, and secondly, the numerical simulation will converge in time with the minimal convergence rate of all the time integrators chosen for each sub-domain. The proposed method is first applied to a mono-dimensional piston problem in which we verify that this method does not degrade the order of accuracy in time of the used time integrators. Then we use this coupling method to investigate the phenomena of propagation of shock waves across the fluidstructure interface. A good agreement is observed between the numerical results and the analytical solutions in the 1-D shock wave propagation test cases. Finally, some multi-dimensional examples are presented. The results are compared with the ones obtained by other coupling approaches
Fleischer, Mario. "Mehrfeldmodellierung und Simulation der äußeren Haarsinneszelle der Cochlea." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-100717.
Full text