Journal articles on the topic 'Fluid viscosity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fluid viscosity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xiang, Chaoyang, and Mingjiang Shi. "Research on ultrasonic-based drilling fluid viscosity detection method." Advances in Engineering Research Possibilities and Challenges 1, no. 3 (2025): 1. https://doi.org/10.63313/aerpc.9012.
Full textYang, Shichu, Weichu Yu, Mingwei Zhao, Fei Ding, and Ying Zhang. "A Review of Weak Gel Fracturing Fluids for Deep Shale Gas Reservoirs." Gels 10, no. 5 (2024): 345. http://dx.doi.org/10.3390/gels10050345.
Full textJia, Sihui, and Mingzhang Luo. "Monitoring of Liquid Viscosity for Viscous Dampers through a Wireless Impedance Measurement System." Applied Sciences 12, no. 1 (2021): 189. http://dx.doi.org/10.3390/app12010189.
Full textBeeson-Jones, Tim H., and Andrew W. Woods. "On the selection of viscosity to suppress the Saffman–Taylor instability in a radially spreading annulus." Journal of Fluid Mechanics 782 (October 6, 2015): 127–43. http://dx.doi.org/10.1017/jfm.2015.512.
Full textVázquez-Greciano, Andrea, César De Santos-Berbel, Antonio Aznar López, and Jesús M. Ortiz Herrera. "Evaluation of the Fluid Properties Modification Through Magnetic Fields for Their Application on Tuned Liquid Dampers: An Experimental Approach." Applied Sciences 15, no. 8 (2025): 4194. https://doi.org/10.3390/app15084194.
Full textFeneuil, Blandine, Elie N'Gouamba, Jan Ole Skogestad, and Harald Linga. "Effect of Dissolution of CO2 and CH4 on the Flow Curve of Drilling Fluids." Annual Transactions of the Nordic Rheology Society 33 (May 9, 2025): 79–88. https://doi.org/10.31265/atnrs.867.
Full textLumsden, Jonathan M., John P. Caron, James F. Steffe, Jenni L. Briggs, and Stephen P. Arnoczky. "Apparent viscosity of the synovial fluid from mid-carpal, tibiotarsal, and distal interphalangeal joints of horses." American Journal of Veterinary Research 57, no. 6 (1996): 879–83. http://dx.doi.org/10.2460/ajvr.1996.57.06.879.
Full textRamadhan, Dimas, Hidayat Tulloh, and Cahyadi Julianto. "Analysis Study Of The Effect In Selecting Combination Of Fracturing Fluid Types And Proppant Sizes On Folds Of Increase (FOI) To Improve Well Productivity." Journal of Petroleum and Geothermal Technology 1, no. 2 (2020): 92. http://dx.doi.org/10.31315/jpgt.v1i2.3886.
Full textNarasimhan, Arunn, and Jose´ L. Lage. "Modified Hazen-Dupuit-Darcy Model for Forced Convection of a Fluid With Temperature-Dependent Viscosity." Journal of Heat Transfer 123, no. 1 (2000): 31–38. http://dx.doi.org/10.1115/1.1332778.
Full textLebedev, A. V. "Viscosity Anomalies of Magnetic Fluid Stabilized by a Double Layer of Surfactant in Water." Proceedings of the Southwest State University. Series: Engineering and Technology 13, no. 4 (2024): 88–97. http://dx.doi.org/10.21869/2223-1528-2023-13-4-88-97.
Full textAnnabi, Yosra. "Comparison between Newtonian fluid flow, Stokes flow and Stokes-Oseen flow." International Journal of Multidisciplinary Research and Growth Evaluation 5, no. 5 (2024): 248–51. http://dx.doi.org/10.54660/.ijmrge.2024.5.5.248-251.
Full textKAUSHAL, ROHAN, SUNITA SRIVASTAVA, and K. TANKESHWAR. "EFFECT OF MASS ON SHEAR VISCOSITY OF BINARY FLUID MIXTURE CONFINED TO NANOCHANNELS." International Journal of Nanoscience 08, no. 06 (2009): 543–50. http://dx.doi.org/10.1142/s0219581x09006390.
Full textLi, Peisheng, Chengyu Peng, Peng Du, Ying Zhang, Boheng Dong, and Ming Ma. "The investigation of the viscous fingering phenomenon of immiscible fluids displacement by the Lattice Boltzmann method." Canadian Journal of Physics 98, no. 7 (2020): 650–59. http://dx.doi.org/10.1139/cjp-2019-0120.
Full textMalhotra, Sahil, Eric R. Lehman, and Mukul M. Sharma. "Proppant Placement Using Alternate-Slug Fracturing." SPE Journal 19, no. 05 (2014): 974–85. http://dx.doi.org/10.2118/163851-pa.
Full textZhang, Anni, and Eric S. G. Shaqfeh. "Rheology of non-Brownian particle suspensions in viscoelastic solutions. Part II: Effect of a shear thinning suspending fluid." Journal of Rheology 67, no. 2 (2023): 517–40. http://dx.doi.org/10.1122/8.0000541.
Full textArnipally, Sumanth Kumar, and Ergun Kuru. "Settling Velocity of Particles in Viscoelastic Fluids: A Comparison of the Shear-Viscosity and Elasticity Effects." SPE Journal 23, no. 05 (2018): 1689–705. http://dx.doi.org/10.2118/187255-pa.
Full textAit Abderrahmane, Hamid, Shahid Rabbani, and Mohamed Sassi. "Inertia Effects in the Dynamics of Viscous Fingering of Miscible Fluids in Porous Media: Circular Hele-Shaw Cell Configuration." Energies 14, no. 19 (2021): 6432. http://dx.doi.org/10.3390/en14196432.
Full textBallato, A. "MEMS fluid viscosity sensor." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 57, no. 3 (2010): 669–76. http://dx.doi.org/10.1109/tuffc.2010.1463.
Full textYue, Qian Sheng, Qing Zhi Yang, Shu Jie Liu, Bao Sheng He, and You Lin Hu. "Rheological Properties of Water Based Drilling Fluid in Deep Water Drilling Conditions." Applied Mechanics and Materials 318 (May 2013): 507–12. http://dx.doi.org/10.4028/www.scientific.net/amm.318.507.
Full textMuratova, Samal, Boranbay Ratov, Volodymyr Khomenko, Oleksandr Pashchenko, and Oleksandr Kamyshatskyi. "Improvement of the methodology for measuring plastic viscosity and dynamic shear stress of drilling fluids." IOP Conference Series: Earth and Environmental Science 1491, no. 1 (2025): 012026. https://doi.org/10.1088/1755-1315/1491/1/012026.
Full textYe, Kaijie, Denghui He, Lin Zhao, and Pengcheng Guo. "Influence of Fluid Viscosity on Cavitation Characteristics of a Helico-Axial Multiphase Pump (HAMP)." Energies 15, no. 21 (2022): 8149. http://dx.doi.org/10.3390/en15218149.
Full textYu, Yongjie, Zhiguo Wang, Yixing Yang, Yang Liu, Xuanchen Wu, and Leixin Yin. "Effects of pyroelectric nanoparticles on the temperature resistance of VES fracturing fluids." Journal of Physics: Conference Series 2993, no. 1 (2025): 012034. https://doi.org/10.1088/1742-6596/2993/1/012034.
Full textKontaxi, Georgia, Yorgos G. Stergiou, and Aikaterini A. Mouza. "Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid." Micromachines 12, no. 1 (2021): 71. http://dx.doi.org/10.3390/mi12010071.
Full textKontaxi, Georgia, Yorgos G. Stergiou, and Aikaterini A. Mouza. "Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid." Micromachines 12, no. 1 (2021): 71. http://dx.doi.org/10.3390/mi12010071.
Full textSchäfer, Thomas. "Fluid Dynamics and Viscosity in Strongly Correlated Fluids." Annual Review of Nuclear and Particle Science 64, no. 1 (2014): 125–48. http://dx.doi.org/10.1146/annurev-nucl-102313-025439.
Full textGucluer, Sinan. "A Miniaturized Archimedean Screw Pump for High-Viscosity Fluid Pumping in Microfluidics." Micromachines 14, no. 7 (2023): 1409. http://dx.doi.org/10.3390/mi14071409.
Full textNOGUEIRA, P. C., and R. CHAN. "RADIATING GRAVITATIONAL COLLAPSE WITH SHEAR VISCOSITY AND BULK VISCOSITY." International Journal of Modern Physics D 13, no. 08 (2004): 1727–52. http://dx.doi.org/10.1142/s0218271804005158.
Full textQin, Zhipeng, Wei Huang, Zhipeng Ning, and Kang Hu. "Exchange Flows in Inclined Pipes with Different Viscosity Ratios." Applied Sciences 14, no. 4 (2024): 1573. http://dx.doi.org/10.3390/app14041573.
Full textBraun, Heinrich R., Spyridon Korres, Peter Laurs, and Joerg W. H. Franke. "Impact of Ultra-Low Viscosity Fluids on Drivetrain Functionality and Durability." Lubricants 9, no. 12 (2021): 119. http://dx.doi.org/10.3390/lubricants9120119.
Full textHESSE, M. A., H. A. TCHELEPI, B. J. CANTWEL, and F. M. ORR. "Gravity currents in horizontal porous layers: transition from early to late self-similarity." Journal of Fluid Mechanics 577 (April 19, 2007): 363–83. http://dx.doi.org/10.1017/s0022112007004685.
Full textOrtega-Torres, E., E. J. Villamizar-Roa, and M. A. Rojas-Medar. "Micropolar Fluids with Vanishing Viscosity." Abstract and Applied Analysis 2010 (2010): 1–18. http://dx.doi.org/10.1155/2010/843692.
Full textLi, Wei, and Pengzhan Huang. "A decoupled algorithm for fluid-fluid interaction at small viscosity." Filomat 37, no. 19 (2023): 6365–72. http://dx.doi.org/10.2298/fil2319365l.
Full textWu, Chenjun, Qingxu Zhang, Xinpeng Fan, Yihu Song, and Qiang Zheng. "Magnetorheological elastomer peristaltic fluid conveying system for non-Newtonian fluids with an analogic moisture loss process." Journal of Intelligent Material Systems and Structures 30, no. 13 (2019): 2013–23. http://dx.doi.org/10.1177/1045389x19853625.
Full textNaduvinamani, N. B., and Bhagyashri Kotreppa Koppa. "Impact of Viscosity Variation on The Static and Dynamic Characteristics of Squeeze Film Lubrication of Rough Short Journal Bearing With Micropolar Fluid." Indian Journal Of Science And Technology 18, no. 8 (2025): 595–607. https://doi.org/10.17485/ijst/v18i8.3402.
Full textYang, Zhengming, Zhuangzhi Ma, Yutian Luo, Yapu Zhang, Hekun Guo, and Wei Lin. "A Measured Method for In Situ Viscosity of Fluid in Porous Media by Nuclear Magnetic Resonance." Geofluids 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/9542152.
Full textSHIMADA, K., and S. KAMIYAMA. "HYDRODYNAMIC CHARACTERISTICS OF ELECTRORHEOLOGICAL FLUID IN A PARALLEL DUCT FLOW." International Journal of Modern Physics B 15, no. 06n07 (2001): 980–87. http://dx.doi.org/10.1142/s0217979201005507.
Full textShetty, Mayank Udayakumar, and Dhananjay Vijay Kapse. "Fabrication and Validation of Rotational Viscometer." International Journal for Research in Applied Science and Engineering Technology 10, no. 7 (2022): 728–31. http://dx.doi.org/10.22214/ijraset.2022.45341.
Full textQiu, Ruofan, Anlin Wang, Qiwei Gong, and Tao Jiang. "Simulation of two-phase fluid mixture flow in rectangular two-inlet cavity using lattice Boltzmann method." International Journal of Modern Physics C 25, no. 04 (2014): 1450004. http://dx.doi.org/10.1142/s0129183114500041.
Full textLi, Zixian, Decai Li, Yanwen Li, and Shuntao Han. "Influence of High Viscosity and Magnetoviscous Effect on the Washout Resistance of Magnetic Fluid." Magnetochemistry 9, no. 5 (2023): 134. http://dx.doi.org/10.3390/magnetochemistry9050134.
Full textZhang, Xianfa, Jinsheng Sun, Zonglun Wang, Jingping Liu, and Kaihe Lv. "Development and evaluation of a high temperature and high salinity resistant rheological enhancer for water-based drilling fluids." Journal of Physics: Conference Series 2353, no. 1 (2022): 012001. http://dx.doi.org/10.1088/1742-6596/2353/1/012001.
Full textKato, H., Y. Fujii, H. Yamaguchi, and M. Miyanaga. "Frictional Drag Reduction by Injecting High-Viscosity Fluid Into Turbulent Boundary Layer." Journal of Fluids Engineering 115, no. 2 (1993): 206–12. http://dx.doi.org/10.1115/1.2910125.
Full textFetecau, Constantin, Dumitru Vieru, Tehseen Abbas, and Rahmat Ellahi. "Analytical Solutions of Upper Convected Maxwell Fluid with Exponential Dependence of Viscosity under the Influence of Pressure." Mathematics 9, no. 4 (2021): 334. http://dx.doi.org/10.3390/math9040334.
Full textCui, Kahlil Fredrick, Gordon G. D. Zhou, and Lu Jing. "Mechanisms of size segregation in granular flows with different ambient fluids." EPJ Web of Conferences 249 (2021): 14015. http://dx.doi.org/10.1051/epjconf/202124914015.
Full textN, B. Naduvinamani, and Kotreppa Koppa Bhagyashri. "Impact of Viscosity Variation on The Static and Dynamic Characteristics of Squeeze Film Lubrication of Rough Short Journal Bearing With Micropolar Fluid." Indian Journal of Science and Technology 18, no. 8 (2025): 595–607. https://doi.org/10.17485/IJST/v18i8.3402.
Full textJin, Yong-Xin, De-Sheng Zhang, Xi Sheng, Lei Shi, Wei-Dong Shi, and Dao-Hong Wang. "Effect of molten salt properties on internal flow and disk friction loss of molten salt pump." Thermal Science 24, no. 4 (2020): 2347–56. http://dx.doi.org/10.2298/tsci2004347j.
Full textSingh, Udaya, Ram Gupta, and Vijay Kapur. "Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid model." Chemical and Process Engineering 32, no. 4 (2011): 333–49. http://dx.doi.org/10.2478/v10176-011-0027-1.
Full textLiu, Jianbin, Liguo Zhong, Tongchun Hao, and Yigang Liu. "Study on Flow Characteristics of Produced Fluid in Bohai Oilfield Cycle Steam Stimulated Heavy Oil Reservoir." IOP Conference Series: Earth and Environmental Science 966, no. 1 (2022): 012006. http://dx.doi.org/10.1088/1755-1315/966/1/012006.
Full textJiang, Feng, Dehua Chen, Xiao He, et al. "The Influence of Large Variations in Fluid Density and Viscosity on the Resonance Characteristics of Tuning Forks Simulated by Finite Element Method." Applied Sciences 14, no. 13 (2024): 5540. http://dx.doi.org/10.3390/app14135540.
Full textMitani, Yuya, Takahiro Yano, Takuyoh Hagi, Keiko Watanabe, and Koji Fukudome. "High-Speed impact experiment for evaluation of magnetorheological fluid’s shock-absorption performance." EPJ Web of Conferences 183 (2018): 04008. http://dx.doi.org/10.1051/epjconf/201818304008.
Full textFranta, M., J. Málek, and K. R. Rajagopal. "On steady flows of fluids with pressure– and shear–dependent viscosities." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2055 (2005): 651–70. http://dx.doi.org/10.1098/rspa.2004.1360.
Full text