Academic literature on the topic 'Fluid Viscous Damping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluid Viscous Damping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fluid Viscous Damping"
NISHIYAMA, HIDEYA, TADAMASA OYAMA, and TOYOHISA FUJITA. "DAMPING CHARACTERISTICS OF MR FLUIDS IN LOW MAGNETIC FIELDS." International Journal of Modern Physics B 15, no. 06n07 (March 20, 2001): 829–36. http://dx.doi.org/10.1142/s0217979201005337.
Full textHuang, Shujuan, Diana-Andra Borca-Tasciuc, and John A. Tichy. "A simple expression for fluid inertia force acting on micro-plates undergoing squeeze film damping." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467, no. 2126 (September 29, 2010): 522–36. http://dx.doi.org/10.1098/rspa.2010.0216.
Full textTANG, G. H., Y. H. ZHANG, R. W. BARBER, X. J. GU, and D. R. EMERSON. "MODELING VISCOUS FLUID DAMPING IN OSCILLATING MICROSTRUCTURES." Modern Physics Letters B 23, no. 03 (January 30, 2009): 241–44. http://dx.doi.org/10.1142/s0217984909018102.
Full textZhao, Guo Hui, and Yu Min Zhang. "Parametric Sensitivity Study on Fluid Viscous Damper of Long Span Suspension Bridge." Advanced Materials Research 255-260 (May 2011): 998–1002. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.998.
Full textFuchs, Vilmar, and Olaf Wünsch. "Fluid-Structure-Interaction-Analysis concerning Damping Features of Viscous Fluids." PAMM 12, no. 1 (December 2012): 385–86. http://dx.doi.org/10.1002/pamm.201210181.
Full textGuo, Qiang, Yan Bei Chen, Xiang Liang Ning, and Lu Tang. "Speedy Design Method for Fluid Viscous Dampers Based on Numerical Simulation by CFD." Advanced Materials Research 446-449 (January 2012): 3869–74. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.3869.
Full textKolekar, Shreedhar. "Vibration Analysis of Simply Supported Magneto Rheological Fluid Sandwich Beam." Applied Mechanics and Materials 612 (August 2014): 23–28. http://dx.doi.org/10.4028/www.scientific.net/amm.612.23.
Full textGurski, K. F., and R. L. Pego. "Normal modes for a stratified viscous fluid layer." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 132, no. 3 (June 2002): 611–25. http://dx.doi.org/10.1017/s0308210500001803.
Full textJafari Kang, Saeed, Esmaeil Dehdashti, Vahid Vandadi, and Hassan Masoud. "Optimal viscous damping of vibrating porous cylinders." Journal of Fluid Mechanics 874 (July 9, 2019): 339–58. http://dx.doi.org/10.1017/jfm.2019.457.
Full textTan, L., L. Lu, G. Q. Tang, L. Cheng, and X. B. Chen. "A viscous damping model for piston mode resonance." Journal of Fluid Mechanics 871 (May 24, 2019): 510–33. http://dx.doi.org/10.1017/jfm.2019.302.
Full textDissertations / Theses on the topic "Fluid Viscous Damping"
Oesterle, Michael Gerhardt. "Use of Incremental Dynamic Analysis to Assess the Performance of Steel Moment-Resisting Frames with Fluid Viscous Dampers." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/31536.
Full textMaster of Science
Kruep, Stephanie Jean. "Using Incremental Dynamic Analysis to Visualize the Effects of Viscous Fluid Dampers on Steel Moment Frame Drift." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/34122.
Full textMaster of Science
Tell, Sarah. "Vibration mitigation of high-speed railway bridges : Application of fluid viscous dampers." Licentiate thesis, KTH, Bro- och stålbyggnad, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205672.
Full textI skrivande stund har en utbyggnad av det svenska järnvägsnätet initierats. Målet är att skapa en höghastighetsanslutning mellan de folkrikaste städerna i Sverige - Stockholm, Göteborg och Malmö, och vidare ut i Europa. Därmed ökar sannolikheten att snabbare, längre och tyngre utländska tåg korsar de svenska järnvägslinjerna. Dock kan detta bli problematiskt i och med att järnvägsbroars dynamiska respons och, följaktligen, risken för resonans ökar med ökad tåghastighet. Broar dimensioneras ofta utifrån nuvarande förutsättningar och hänsyn tas sällan till framtida hållbarhetskrav, exempelvis p.g.a. kostnadsbesparingar. Ur ett framtidsperspektiv kan därför det dynamiska beteendet hos befintliga broar komma att bli otillräckligt. Utbyggnaden av höghastighetsnätverket ökar därmed behovet av innovativa konstruktionslösningar för nya broar och kostnadseffektiva uppgraderingsmetoder för befintliga sträckor. Syftet med föreliggande avhandling är att föreslå en metod för att minska de vibrationsnivåer som kan uppstå i både nybyggda och befintliga järnvägsbroar för höghastighetståg. Huvudfokus är en eftermonteringsmetod med viskösa dämpare, som har installerats mellan brons överbyggnad och landfästen, för att minska brobanans vertikala acceleration under gällande europeiska dimensioneringskrav. Vidare avses att undersöka effektiveteten av ett sådant system, samt att identifiera och analysera de parametrar och osäkerheter som kan påverka dess funktionalitet. Fall- och parameterstudier, samt statistiska metoder används och utvärderas för att undersöka tillämpbarheten av den föreslagna vibrationsdämpningsmetoden. Två olika modeller, ett enfrihetsgradssystem och en finit elementmodell, har skapats och jämförts. Utifrån dessa modeller kan påverkan av dämparens parametrar, variabiliteten hos materialegenskaperna och behandlingen av olika modelleringsaspekter studeras. Från resultaten är det tydligt att brobanans accelerationsnivå avsevärt reduceras efter monteringen av viskösa dämpare, till och med under dimensioneringskraven.
QC 20170425
Miras, Thomas. "Effets de la viscosité et de la capillarité sur les vibrations linéaires d'une structure élastique contenant un liquide incompressible." Phd thesis, Conservatoire national des arts et metiers - CNAM, 2013. http://tel.archives-ouvertes.fr/tel-00877348.
Full textOrihuela, Allende Giuliana Mercedes, and Olarte Cristopher Guy Velazque. "Análisis de la implementación de disipadores fluido-viscosos en el comportamiento torsional de una edificación de 5 niveles localizada en Lima." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2021. http://hdl.handle.net/10757/655857.
Full textThe present work consists of the implementation of these fluid-viscous dissipators in a building with a predominance of structural walls, of 5 levels that presents a torsional behavior, as well as fails to comply with the permissible drift limit established by Norma Técnica E.030. The design of these dissipators starts with the design objective of moderate damage and under an earthquake of 475 years of return period, whose corresponding objective drift assumes a value of 0.58%. It is discussed under diagonal placement for linear and nonlinear dampers. The placement is done uniformly, and in a way that compensates for torsional movement. A total of 40 heatsinks were placed throughout the building, 8 per floor. Among the main results, the forces in the dissipators were in the order of 200 ton-f and torsional behavior due to flexible areas of the structure were reduced by 80%. The implementation of fluid-viscous heatsinks allows the drift to be reduced by 60%, and all drifts are kept below 0.58%, that is, both linear and non-linear devices meet the target drift, even though the latter have a higher drift, given their lower C, therefore, lower force, less drift control, even so, they are efficient, both structurally and economically, given their lower strength. In the future, in Peru, it will be necessary to implement a regulation for the design and the cushioning contribution in the building.
Trabajo de investigación
Peng, Kang-Tong, and 彭康桐. "Equivalent Damping Ratio for Nonlinear Fluid Viscous Dampers." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/99596654767344363535.
Full text國立嘉義大學
土木與水資源工程學系研究所
98
Nonlinear fluid viscous dampers are the most widely used seismic energy dissipation devices currently. The increasing of damping is to prevent excessive displacement. The purpose of the study is to discuss the accuracy of the equivalent damping ratio of nonlinear viscous dampers, and it is focused on the modification of the existing design equation of equivalent damping ratio. Conventional equation of equivalent damping ratio is obtained by harmonic loads that are deterministic, but the real external force is the earthquake loads that are random. Thus, this research is to modify the equation of equivalent damping ratio according to the real ground motions recorded in California. Using SAP2000 to calculate the maximum displacement of single-degree-of-freedom (SDOF) systems and comparing it of equivalent linear system with it of nonlinear systems. The results show that the equivalent damping ratio overestimate the maximum displacement of the short-period structure, while it underestimate the maximum displacement of the long-period structure. Therefore, this study will modify criterion of computing equivalent damping ratio. Damping coefficient of the nonlinear system is adjusted by multiplying a modification factor to get better equivalent damping ratio. Then, regression equations of damping modification factors are obtained by nonlinear regression analysis. The study show that the proposed equations of equivalent damping ratio for various site classes and α values acceptable and stable.
Γρηγορίου, Βασίλειος. "Μελέτη συστημάτων σεισμικής προστασίας κρυογενικών δεξαμενών υγροποιημένου φυσικού αερίου με χρήση προσομοιωμάτων πεπερασμένων στοιχείων." 2006. http://nemertes.lis.upatras.gr/jspui/handle/10889/97.
Full textIn the present work the dynamic response of liquefied natural gas cryogenic tanks subjected to earthquake action is investigated. Since these tanks are critical elements for the function of a natural gas distribution system and because a potential failure of them could lead to a major disaster, very severe requirements concerning the seismic design of these tanks are imposed. For the design against earthquake action two seismic events are generally considered: an event with a mean return period of 475 years during which the tanks are expected to remain fully operational and an event with a mean return period of the order of 5000 to 1000 years during which the safe shut down of the tanks is to be ensured, while minimum damage is accepted at the structural parts of the tanks. The type of tanks under consideration is constituted of two shells: an outer one made of prestressed concrete and an inner one made of cryogenic steel in which the product is stored. Both shells rest on a common base slab. In these work two alternative ways for the support of this slab are examined: a) the slab lays directly on the ground and b) the slab lays on a number of devices which provide seismic isolation. The following isolation systems are examined. a) high damping rubber bearings, b) lead core rubber bearings and c) low damping rubber bearing in conjunction with non-linear viscous dampers. The examined structural dynamic problem is characterised by certain particularities, besides the one of the implementation of an isolation system. The most important of them are sloshing of the free surface, dynamic fluid-structure interaction, dynamic soil-structure interaction and interaction between the inner and outer shell. These phenomena are taken into consideration in the preformed analyses. For the modeling of the free surface effect the realistic assumption of small wave height is made and the linear wave theory is employed. For the modeling of the fluid-structure interaction a Lagrangian approach is applied using finite elements for the modeling of the liquid and the solid domain. The soil-structure interaction is simulated by using concentrated stiffness and damping elements. Concentrated stiffness and damping elements are used for the modeling of the isolation systems as well. Two cases of existing tanks are adopted for analysis. The two tanks differ mainly in capacity and in the height to radius ratio. Both tanks are designed and constructed without seismic isolation. A global parametric finite element model is developed for the analyses. In this model the appropriate elements are incorporated for the modeling of the soil-structure interaction and the seismic isolation system, depending on the analysed case. The model is used for the calculation of eigenmodes and eigenfrequencies and for performing linear and non-linear transient analyses in time domain. Non-linear analyses are necessary in order for the highly non-linear behavior of the isolation devices to be properly simulated. In these cases the non-linearity is concentrated at the elements which simulate the seismic isolation system while the rest of the structure is considered elastic in all cases. This consideration is justified by the fact that for these tanks the acceptable damage, and consequently non-linearity in the behavior of the structural part, is minimum. Selective results of the performed analyses are presented. These results refer mainly to base shear forces, overturning moments, horizontal displacements at different levels of the tank and sloshing heights. Emphasis is on the quantification of the impact of the soil-structure interaction and the implementation of the examined seismic isolation systems.
Books on the topic "Fluid Viscous Damping"
Black, Cameron J. Viscous heating of fluid dampers under wind and seismic loading: Experimental studies, mathematical modeling and design formulae. Berkeley: Dept. of Civil and Environmental Engineering, University of California, 2005.
Find full textBlack, Cameron J. Viscous heating of fluid dampers under wind and seismic loading: Experimental studies, mathematical modeling and design formulae. Berkeley: Dept. of Civil and Environmental Engineering, University of California, 2005.
Find full textBlack, Cameron J. Viscous heating of fluid dampers under wind and seismic loading: Experimental studies, mathematical modeling and design formulae. Berkeley: Dept. of Civil and Environmental Engineering, University of California, 2005.
Find full textZhao, Xiaopeng. Electrorheological material and device design and preparation. New York: Nova Science Publishers, 2007.
Find full textJianbo, Yin, and Tang Hong, eds. Electrorheological material and device design and preparation. New York: Nova Science Publishers, 2008.
Find full textBook chapters on the topic "Fluid Viscous Damping"
"Passive Dampers." In Structural Dynamics and Static Nonlinear Analysis From Theory to Application, 158–69. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4399-3.ch005.
Full textGherbi, Aboubaker, and Mourad Belgasmia. "Wind Loads on Structures, and Energy Dissipation Systems Optimization." In Optimization of Design for Better Structural Capacity, 128–49. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7059-2.ch005.
Full text"Evaluation of viscous damping due to solid-fluid interaction in a poroelastic layer subjected to shear dynamic actions." In Numerical Methods in Geotechnical Engineering, 463–68. CRC Press, 2010. http://dx.doi.org/10.1201/b10551-84.
Full textConference papers on the topic "Fluid Viscous Damping"
Moitra, Anutosh. "Role of enthalpy damping in low Mach number viscous computations." In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2169.
Full textPeiwei, OU, Min Wei, and Wang Dong. "The damping algorithm and design of viscous damper." In 2019 IEEE 8th International Conference on Fluid Power and Mechatronics (FPM). IEEE, 2019. http://dx.doi.org/10.1109/fpm45753.2019.9035913.
Full textYagci, Baris, Tikeswar Naik, and Wei-Yang Lu. "Modeling and Experimentation of Viscous Damping for LIGA Structures." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-83027.
Full textMorgenthaler, Daniel R. "Development and testing of an improved viscous fluid damping device for appendage damping and component isolation." In Smart Structures & Materials '95, edited by Conor D. Johnson. SPIE, 1995. http://dx.doi.org/10.1117/12.208886.
Full textFan, Xiantao, Yian Du, and Wei Tan. "Vibration Suppression in Frame-Structural Tower With Fluid Viscous Dampers." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93333.
Full textKjolsing, Eric, and Michael Todd. "The impact of boundary conditions and fluid velocity on damping for a fluid conveying pipe in a viscous fluid." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Gyuhae Park. SPIE, 2016. http://dx.doi.org/10.1117/12.2219319.
Full textJohansen, Per, Niels C. Bender, Anders H. Hansen, and Lasse Schmidt. "Investigation of Squeeze Film Damping and Associated Loads." In ASME/BATH 2017 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fpmc2017-4300.
Full textGottlieb, Oded, Michael Feldman, and Solomon C. S. Yim. "Analysis of a Nonlinear Friction Damping Mechanism in a Fluid-Structure Interaction System." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0354.
Full textOnishi, Hajime, Tomoya Kitamoto, Tsuyoshi Maeda, Hideki Shimohara, Hirochika Tanigawa, and Katsuya Hirata. "Added-Mass and Viscous-Damping Forces Acting on Various Oscillating 3D Objects." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28637.
Full textYeung, Ronald W., and Yichen Jiang. "Effects of Shaping on Viscous Damping and Motion of Heaving Cylinders." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-50243.
Full text