Academic literature on the topic 'Fluide stratifié'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluide stratifié.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fluide stratifié"

1

MARTIN, V. "PROPAGATION D'UNE ONDE HARMONIQUE LINÉAIRE EN MILIEU FLUIDE STRATIFIÉ, SOLUTION ÉLÉMENTAIRE." Le Journal de Physique Colloques 51, no. C2 (1990): C2–353—C2–356. http://dx.doi.org/10.1051/jphyscol:1990285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

James, Guillaume. "Réduction à une variété centrale du problème des ondes progressives en fluide continûment stratifié, dans la limite d'une stratification discontinue." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 327, no. 7 (1998): 699–704. http://dx.doi.org/10.1016/s0764-4442(99)80104-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shogo, Shakouchi, and Uchiyama Tomomi. "1097 MIXING PHENOMENA OF DENSITY STRATIFIED FLUID WITH JET FLOW." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1097–1_—_1097–4_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1097-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MAURER, BENJAMIN D., DIOGO T. BOLSTER, and P. F. LINDEN. "Intrusive gravity currents between two stably stratified fluids." Journal of Fluid Mechanics 647 (March 18, 2010): 53–69. http://dx.doi.org/10.1017/s0022112009993752.

Full text
Abstract:
We present an experimental and numerical study of one stratified fluid propagating into another. The two fluids are initially at rest in a horizontal channel and are separated by a vertical gate which is removed to start the flow. We consider the case in which the two fluids have the same mean densities but have different, constant, non-zero buoyancy frequencies. In this case the fluid with the smaller buoyancy frequency flows into the other fluid along the mid-depth of the channel in the form of an intrusion and two counter-flowing gravity currents of the fluid with the larger buoyancy frequency flow along the top and bottom boundaries of the channel. Working from the available potential energy of the system and measurements of the intrusion thickness, we develop an energy model to describe the speed of the intrusion in terms of the ratio of the two buoyancy frequencies. We examine the role of the stratification within the intrusion and the two gravity currents, and show that this stratification plays an important role in the internal structure of the flow, but has only a secondary effect on the speeds of the exchange flows.
APA, Harvard, Vancouver, ISO, and other styles
5

Mahrt, L. "Stably Stratified Atmospheric Boundary Layers." Annual Review of Fluid Mechanics 46, no. 1 (2014): 23–45. http://dx.doi.org/10.1146/annurev-fluid-010313-141354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Govindarajan, Rama, and Kirti Chandra Sahu. "Instabilities in Viscosity-Stratified Flow." Annual Review of Fluid Mechanics 46, no. 1 (2014): 331–53. http://dx.doi.org/10.1146/annurev-fluid-010313-141351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

El-Khatib, Noaman A. F. "Immiscible Displacement of Non-Newtonian Fluids in Communicating Stratified Reservoirs." SPE Reservoir Evaluation & Engineering 9, no. 04 (2006): 356–65. http://dx.doi.org/10.2118/93394-pa.

Full text
Abstract:
Summary The displacement of non-Newtonian power-law fluids in communicating stratified reservoirs with a log-normal permeability distribution is studied. Equations are derived for fractional oil recovery, water cut, injectivity ratio, and pseudorelative permeability functions, and the performance is compared with that for Newtonian fluids. Constant-injection-rate and constant-total-pressure-drop cases are studied. The effects of the following factors on performance are investigated: the flow-behavior indices, the apparent mobility ratio, the Dykstra-Parsons variation coefficient, and the flow rate. It was found that fractional oil recovery increases for nw > no and decreases for nw < no, as compared with Newtonian fluids. For the same ratio of nw /no, oil recovery increases as the apparent mobility ratio decreases. The effect of reservoir heterogeneity in decreasing oil recovery is more apparent for the case of nw > no . Increasing the total injection rate increases the recovery for nw > no, and the opposite is true for nw < no . It also was found that the fractional oil recovery for the displacement at constant total pressure drop is lower than that for the displacement at constant injection rate, with the effect being more significant when nw < no. Introduction Many of the fluids injected into the reservoir in enhanced-oil-recovery (EOR)/improved-oil-recovery (IOR) processes such as polymer, surfactant, and alkaline solutions may be non-Newtonian; in addition, some heavy oils exhibit non-Newtonian behavior. Flow of non-Newtonian fluids in porous media has been studied mainly for single-phase flow. Savins (1969) presented a comprehensive review of the rheological behavior of non-Newtonian fluids and their flow behavior through porous media. van Poollen and Jargon (1969) presented a finite-difference solution for transient-pressure behavior, while Odeh and Yang (1979) derived an approximate closed-form analytical solution of the problem. Chakrabarty et al. (1993) presented Laplace-space solutions for transient pressure in fractal reservoirs. For multiphase flow of non-Newtonian fluids in porous media, the problem was considered only for single-layer cases. Salman et al. (1990) presented the modifications for the Buckley-Leverett frontal-advance method and for the JBN relative permeability method for non-Newtonian power-law fluid displacing a Newtonian fluid. Wu et al. (1992) studied the displacement of a Bingham non-Newtonian fluid (oil) by a Newtonian fluid (water). Wu and Pruess (1998) introduced a numerical finite-difference solution for displacement of non-Newtonian fluids in linear systems and in a five-spot pattern. Yi (2004) developed a Buckley-Leverett model for displacement by a Newtonian fluid of a fracturing fluid having a Herschel-Bulkley rheological behavior. An iterative procedure was used to obtain a solution of the model. The methods available in the literature to predict linear waterflooding performance in stratified reservoirs are grouped into two categories depending on the assumption of communication or no communication between the different layers. In the case of noncommunicating systems, no vertical crossflow is permitted between the adjacent layers. The Dykstra-Parsons (1950) method is the basis for performance prediction in noncommunicating stratified reservoirs.
APA, Harvard, Vancouver, ISO, and other styles
8

Camassa, R., S. Chen, G. Falqui, G. Ortenzi, and M. Pedroni. "Topological selection in stratified fluids: an example from air–water systems." Journal of Fluid Mechanics 743 (March 6, 2014): 534–53. http://dx.doi.org/10.1017/jfm.2013.644.

Full text
Abstract:
AbstractTopologically non-trivial configurations of stratified fluid domains are shown to generate selection mechanisms for conserved quantities. This is illustrated within the special case of a two-fluid system when the density of one of the fluids limits to zero, such as in the case of air and water. An explicit example is provided, demonstrating how the connection properties of the air domain affect total horizontal momentum conservation, despite the apparent translational invariance of the system. The correspondence between this symmetry and the selection process is also studied within the framework of variational principles for stratified ideal fluids.
APA, Harvard, Vancouver, ISO, and other styles
9

Lam, Try, Lionel Vincent, and Eva Kanso. "Passive flight in density-stratified fluids." Journal of Fluid Mechanics 860 (December 3, 2018): 200–223. http://dx.doi.org/10.1017/jfm.2018.862.

Full text
Abstract:
Leaves falling in air and marine larvae settling in water are examples of unsteady descents due to complex interactions between gravitational and aerodynamic forces. Understanding passive flight is relevant to many branches of engineering and science, ranging from estimating the behaviour of re-entry space vehicles to analysing the biomechanics of seed dispersion. The motion of regularly shaped objects falling freely in homogenous fluids is relatively well understood. However, less is known about how density stratification of the fluid medium affects passive flight. In this paper, we experimentally investigate the descent of heavy discs in stably stratified fluids for Froude numbers of order 1 and Reynolds numbers of order 1000. We specifically consider fluttering descents, where the disc oscillates as it falls. In comparison with pure water and homogeneous saltwater fluid, we find that density stratification significantly enhances the radial dispersion of the disc, while simultaneously decreasing the vertical descent speed, fluttering amplitude and inclination angle of the disc during descent. We explain the physical mechanisms underlying these observations in the context of a quasi-steady force and torque model. These findings could have significant impact on the design of unpowered vehicles and on the understanding of geological and biological transport where density and temperature variations may occur.
APA, Harvard, Vancouver, ISO, and other styles
10

Magnaudet, Jacques, and Matthieu J. Mercier. "Particles, Drops, and Bubbles Moving Across Sharp Interfaces and Stratified Layers." Annual Review of Fluid Mechanics 52, no. 1 (2020): 61–91. http://dx.doi.org/10.1146/annurev-fluid-010719-060139.

Full text
Abstract:
Rigid or deformable bodies moving through continuously stratified layers or across sharp interfaces are involved in a wide variety of geophysical and engineering applications, with both miscible and immiscible fluids. In most cases, the body moves while pulling a column of fluid, in which density and possibly viscosity differ from those of the neighboring fluid. The presence of this column usually increases the fluid resistance to the relative body motion, frequently slowing down its settling or rise in a dramatic manner. This column also exhibits specific dynamics that depend on the nature of the fluids and on the various physical parameters of the system, especially the strength of the density/viscosity stratification and the relative magnitude of inertia and viscous effects. In the miscible case, as stratification increases, the wake becomes dominated by the presence of a downstream jet, which may undergo a specific instability. In immiscible fluids, the viscosity contrast combined with capillary effects may lead to strikingly different evolutions of the column, including pinch-off followed by the formation of a drop that remains attached to the body, or a massive fragmentation phenomenon. This review discusses the flow organization and its consequences on the body motion under a wide range of conditions, as well as potentialities and limitations of available models aimed at predicting the body and column dynamics.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fluide stratifié"

1

Riedinger, Xavier. "Instabilité radiative d'un tourbillon dans un fluide stratifié." Aix-Marseille 1, 2009. http://www.theses.fr/2009AIX11053.

Full text
Abstract:
Les tourbillons dans les ecoulements geophysiques sont souvent nombreux et presents a plusieurs echelles. Ils interviennent aussi bien dans la dynamique des ecoulements que dans leurs proprietes statistiques. Afin d'identifier precisement le r^ole des tourbillons dans les proprietes globales d'un ecoulement geophysique, il est important de conna^itre aussi finement que possible leur dynamique individuelle. Avec cet objectif, nous etudions dans cette these par des moyens theoriques, numeriques et experimentaux, les proprietes de stabilite de tourbillons stratifies modeles : le tourbillon de Lamb-Oseen et une famille d'ecoulements en rotation de Taylor-Couette et de Kepler. Nous montrons notamment que ces ecoulements, stables en milieu homogµene, peuvent devenir instables en presence d'une stratification stable le long de leur axe de rotation. Les trois types d'ecoulements sont soumis a une m^eme forme de destabilisation, l'instabilite radiative dont nous decrivons le mecanisme. Pour le tourbillon de Lamb-Oseen, une etude numerique exhaustive des proprietes de stabilite est realisee en fonction des nombres de Reynolds et de Froude, caracterisant les forces visqueuses et de flottabilite du fluide. Pour de faibles nombres de Reynolds, nous montrons que le mode le plus instable conduit µa une ondulation du vortex que l'on reussit a retrouver experimentalement. Pour l'ecoulement de Taylor-Couette genere par un cylindre en rotation, le mode le plus instable est egalement helicoïdal mais il conduit a une structure rayonnante plus marquee. Nous reussissons egalement a identifier ce mode dans les experiences. En utilisant l'ombroscopie et la technique du "synthetic schlieren", nous montrons aussi que la frequence et la longueur du mode observe sont en tres bon accord avec les predictions numeriques. D'autres resultats numeriques sont presentes qui montrent notamment que l'instabilite radiative n'est que partiellement reduite par la rotation planetaire et qu'elle pourrait etre presente dans un ecoulement keplerien<br>Vortices are widely present in geophysical flows at all scales. They are involved in the dynamics of flows as well as in their statistical properties. In order to identify precisely their role in the global properties of the flow it is important to know their individual dynamics as finely as possible. With this purpose, we study in this thesis through theoretical, numerical and experimental means, the stability properties of models of stratified vortices : The Lamb-Oseen vortex and a family of Taylor-Couette and Keplerian rotative °ows. We show, in particular, that these flows, stable in a homogeneous fluid, can become unstable in the presence of a stable stratification along their rotation axis. The three kinds of flows are subject to the same form of destabilisation, the radiative instability of which we describe the mechanism. For the Lamb-Oseen vortex, a comprehensive numerical study is performed by varying the Reynolds number and the Froude number which characterize the viscosity and the buoyancy of the fluid. For low Reynolds numbers, we show that the most unstable mode leads to an undulation of the vortex that we have obtained successfully in the experiments. For the Taylor-Couette flow generated by the rotation of a cylinder, the most unstable mode is also helical but it exhibits a more pronounced radiative structure. We also succeeded in obtaining this mode experimentally. The frequency and wavelength of the mode have been measured using shadowgraphy and the synthetic schlieren technique, and a very good agreement with the numerics has been demonstrated. Other numerical results are presented which show, in particular, that the radiative instability is only partially reduced by planetary rotation and that it could be present in Keplerian flows
APA, Harvard, Vancouver, ISO, and other styles
2

Aubert, Oriane. "Formes et dynamiques des tourbillons en écoulement stratifié tournant." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4751.

Full text
Abstract:
L’océan et l’atmosphère sont des environnements fluides stratifiés en densité, en référentiel tournant : la force de Coriolis due à la rotation de la planète influence l’écoulement. De grands tourbillons lenticulaires évoluent dans ces environnements, avec parfois de grandes durées de vie comme les Meddies de l’Océan Atlantique.Dans la continuité des expériences de Griffiths &amp; Linden (1981) et Hedstrom &amp; Armi (1988), ces tourbillons sont reproduits en laboratoire en injectant ou aspirant localement du fluide dans une couche d’eau salée tournante, linéairement stratifiée en densité. A l’ordre dominant, les tourbillons sont à l’équilibre cyclo-géostrophique et hydrostatique, d’où l’on dérive la loi de leur rapport d’aspect, validée par les expériences et les observations. Un modèle complet de tourbillon à l’équilibre incluant les recirculations internes est proposé, en partant d’un profil Gaussien pour la vitesse azimutale, puis validé numériquement. A partir de ce modèle, un bilan d’énergie permet alors de décrire la décroissance des tourbillons.Certains tourbillons naturels comme les Meddies présentent des structures fines associées à de forts gradients de densité à leur frontière, que l’on reproduit en laboratoire autour de tourbillons entretenus par une injection continue de fluide. Ces structures en couches sont la manifestation de l’instabilité de McIntyre, instabilité qui apparaît lorsque les diffusivités visqueuse et moléculaire sont sensiblement différentes. L’analyse de stabilité linéaire de McIntyre appliquée au modèle Gaussien de tourbillon permet de retrouver les tailles et temps d’apparition associés au couches qui entourent les Meddies<br>The ocean and the atmosphere are density stratified fluid environments in a rotating frame: the Coriolis force, due to the rotation of the planet, influences the flow. Huge lenticular vortices evolve in these environments, sometimes with very long lifetimes as the Meddies of the Atlantic Ocean.Based on Griffiths &amp; Linden (1981) and Hedstrom &amp; Armi (1988) experiments, such vortices are experimentally reproduced by locally injecting or sucking up fluid in a rotating layer of salty water, linearly density stratified. At dominant order, the vortices are in cyclo-geostrophic and hydrostatic balance, from which the law for their vertical aspect ratio is derived, validated by experiments and observations. A more complete model of vortex in equilibrium is proposed from a Gaussian profile for the azimuthal velocity, including internal secondary circulations, and then numerically validated. From this model, an energy balance allows us to describe the vortices decay.Some natural vortices, as the Meddies, have fine-structures associated to high density gradients at their frontier, that we experimentally reproduce around vortices maintained through a continuous injection of fluid. This layered structure is the expression of McIntyre's instability, which appears when viscous and molecular diffusivities are significantly different. The linear stability analysis of McIntyre applied to the Gaussian model of vortex allows us to recover the sizes and duration of appearance of the layers that surround the Meddies when eddy viscosities measured in the ocean are used
APA, Harvard, Vancouver, ISO, and other styles
3

Benielli, Dominique. "Excitation paramétrique et déferlement d'ondes internes en fluide stratifié." Lyon 1, 1995. http://www.theses.fr/1995LYO10053.

Full text
Abstract:
La dynamique des ondes internes est etudiee experimentalement. Des ondes internes sont excitees par instabilite parametrique, ainsi une cuve remplie, soit de fluide continument stratifie en densite, soit par un bicouche de fluide, est soumise a un mouvement oscillant vertical ce qui revient a moduler sinusoidalement la gravite donc la frequence de brunt vaissala. Dans le cas d'un bicouche, les langues de l'instabilite parametrique de chaque mode d'oscillation de l'interface sont isolees, et leur dynamique est en bon accord avec la theorie faiblement non lineaire d'un oscillateur isole, avec toutefois quelques desaccords quantitatifs sur les taux de dissipation et de croissance. Dans le cas d'une stratification continue, la frequence propre depend uniquement de l'angle que fait le vecteur d'onde avec l'horizontale, et differents modes avec le meme angle sont excitables simultanement, toutefois, nous observons souvent un mode simple qui prevaut. L'instabilite parametrique des modes, du moins dans leur phase de croissance est en bon accord qualitatif avec la theorie. Le mode primaire croit, et developpe une onde secondaire par instabilite parametrique. Ce processus conduit au deferlement de l'onde et a son declin avec melange du fluide. Ensuite l'onde se remet en phase avec l'excitation et croit a nouveau. Nous observons ainsi, une dynamique intermittente. Parallelement a cette etude de processus, une etude statistique de la dynamique de ces ondes turbulentes est realisee. Elle met en evidence un spectre d'energie des ondes en k#-#3 caracteristique d'un regime d'ondes saturees qui se retrouve dans les milieux naturels stratifies, l'atmosphere et l'ocean. Le melange est caracterise par un coefficient de diffusion turbulente que nous obtenons experimentalement. Ce coefficient de diffusion peut etre relie a la partie universelle du spectre, ce qui permet de proposer des formules simples pour estimer le melange vertical dans l'atmosphere et l'ocean
APA, Harvard, Vancouver, ISO, and other styles
4

Koudella, Christophe. "Ondes internes de gravité en fluide stratifié: instabilités, turbulence et vorticité potentielle." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 1999. http://tel.archives-ouvertes.fr/tel-00005960.

Full text
Abstract:
Une étude numérique de la dynamique d'ondes internes de gravité en fluide stablement stratifié est menée. On décrit un algorithme pseudo-spectral<br />parallèle permettant d'intégrer les équations de Navier-Stokes sur une machine paralèele. En deux dimensions d'espace, on analyse la dynamique d'un<br />champ d'ondes internes propagatives, d'amplitude modérée et initialement plan et monochromatique. Le champ d'ondes est instable et déferle. Le déferlement produit une turbulence de petites échelles spatiales influencées par la stratification. L'étude<br />est étendue au cas tridimensionnel, plus réaliste. En trois dimensions, on étudie le même champ d'ondes internes, que l'on perturbe par un bruit infinitésimal ondulatoire tridimensionnel, mais on considère des ondes statiquement stables et<br />instables (grandes amplitudes). On montre que le déferlement d'une onde interne est un processus intrinsèquement tridimensionnel, y compris pour les ondes de faible amplitude. La tridimensionalisation du champ d'ondes s'opère dans les zones de l'espace où le champ de densité devient statiquement instable. L'effondrement gravitationnel d'une zone est de structure transverse au plan de propagation de l'onde. Les effets de la turbulence des petites échelles sur la production de la composante non propagatrice de l'écoulement, le mode de vorticité potentielle et la production d'un écoulement moyen, permet de conclure que seule une petite proportion de l'énergie mécanique initiale est convertie sous ses deux formes, la majeure partie étant dissipée par la dissipation visqueuse et conduction thermique. On reconsidère le mode de vorticiée potentielle par une approche Hamiltonienne non-canonique du fluide parfait stratifié. La dérivation d'un système de dynamique modifiée permet d'étudier la relaxation d'un écoulement stratifié, conservant sa vorticité potentielle et sa densité, vers un état stationnaire d'énergie minimale, correspondant au mode de vorticité potentielle.
APA, Harvard, Vancouver, ISO, and other styles
5

Godoy, Diana Ramiro. "Dynamique des tourbillons pancake en milieu stratifié : diffusion et interaction ondes-tourbillons." Palaiseau, Ecole polytechnique, 2004. https://pastel.archives-ouvertes.fr/tel-00007046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Galmiche, Martin. "Interaction turbulence-champs moyens et ondes de gravités internes dans un fluide stratifié." Toulouse, INPT, 1999. http://www.theses.fr/1999INPT017H.

Full text
Abstract:
En présence d'une stratification stable en densité, situation fréquemment rencontrée dans l'atmosphère et les océans, les forces de flottabilité induites par la gravité se manifestent par la propagation d'ondes internes et affectent fortement la dynamique des écoulements, en particulier la phénoménologie de la turbulence. Cette étude numérique et théorique est consacrée aux propriétés de la turbulence et des ondes internes dans leur interaction avec une stratification et un cisaillement moyen vertical variant avec l'altitude. La simulation numérique directe des équations de Navier-Stokes sous l'approximation de Boussinesq permet de mettre en évidence l'effet radical d'une stratification stable sur les interactions entre la turbulence et les champs moyens de vitesse et de densité, et confirme la tendance de la turbulence stratifiée à former des couches horizontales. Ce phénomène peut être en partie décrit par un modèle analytique linéaire basé sur la théorie de la distorsion rapide. On met également en évidence la génération de courants moyens par l'interaction de deux ondes internes, grâce à un modèle analytique simple appuyé par la simulation numérique directe. Enfin, dans le cdre de l'approximation WBK à l'ordre de l'optique géométrique, une formulation hamiltonienne du problème de la réfraction nous permet d'étudier la distorsion d'un champ d'onde évoluant dans un fluide soumis à une stratification et à un cisaillement non uniformes.
APA, Harvard, Vancouver, ISO, and other styles
7

Cariteau, Benjamin. "Etude de la stabilité et de l'interaction de cyclones intenses en fluide stratifié." Université Joseph Fourier (Grenoble), 2005. http://www.theses.fr/2005GRE10092.

Full text
Abstract:
L'influence de la stratification sur la stabilité et l'interaction des vortex à fait l'objet d'une étude expérimentale. En cuve fixe, une instabilité de courte d. Longueur d'onde se développe au bord du vortex, là où la vitesse angulaire est proche de la ftéquence de stratification. Les résuItats suggérent que son mécanisme fait intervenir une résonance entre le mouvement horizontale et les oscillations gravitaires verticales. Au coeur du vortex, l'instabilité elliptique peut se développer avec des propriétés dépendantes du nombre de Froude basé sur la vitesse maximum et le rayon correspondant. La longueu d'onde augmente fortement pour des valeurs décroissantes et proches de la valeur critique d'inhibition. Pour des valeurs plus grandes, les propriétés de l'instabilité sont très proches de celle obtenues pour un fluide homogène. Ensuite, les différents régimes de stabilité et d'interaction de deux cyclones en fluide stratifié tournant on été étudiés en fonction de la distance de séparation initiale et du rapport d'aspect des vortex. Une instabilité de grande longueur d'onde conduit chaque cyclone à se couper en vortex de plus petit rapport d'aspect. Les résultats sont proches de ceux obtenus numériquement par Dritschel &amp; la Torre Juarez (1996), en particulier, le critére sur le rapport NH/(fR) où N et f sont les ftéquences de stratification et de rotation. Cette instabilité intervient dans le mécanisme de coalescence pour NH/(fR"3 et cause une augmentation de la distance critique de coalescence. Ces résultats sont en accord avec de ressentent études numériques de Dritschel (2002)<br>The stability of a single columnar vortex in a weakly stratified fluid is investigated by means oflaboratory experiments. A short wavelength instability develops at a radius where the angular velocity of fluid particles matches the buoyancy ftequency. This instability is found to be a consequence of a resonant interaction between the horizontal motion and the vertical buoyant oscillations. Ln the core of the vortex, elliptical instability is found to depen, on the Froude number, based on the horizontal velocity, vortex radius and stratification. The wavelength ofthis instability strongly increases for Froude numbers close to the tbreshold oftotal inhibition. For higher values ofthe Froude number the wavelength and growth rate tend rapidly toward the homogeneous limit. Furtber, we have investigated the stabilityand merger oftwo cyclones as a function oftheir initial separation distance and height-to-width aspect-ratio. The long wavelength instability causes each vortex 10 split in10 two vortices with lower aspect-ratio. As a consequence ofthis instability, the critical merging distance increases with the Burger number given by NH/(fR) where N and f are the stratification and rotation ftequencies. These resuIts are in excellent agreement with numerical simulations by Dritschel &amp; la Torre Juarez 1996, and Dritsche12002
APA, Harvard, Vancouver, ISO, and other styles
8

Simon, Guillaume. "Dynamique multi-échelles en fluide stratifié tournant, instabilité de cisaillement et cyclone intense." Ecully, Ecole centrale de Lyon, 2007. http://bibli.ec-lyon.fr/exl-doc/gsimon.pdf.

Full text
Abstract:
Cette étude traite des fluctuations dans un écoulement de base cisaillé, stratifié et tournant selon une condition d’admissibilité sur le mouvement moyen. Cette condition d’admissibilité est connue sous le nom de relation du vent thermique en météorologie et de relation thermo-haline en océanographie. Par rapport aux études classiques d’instabilités baroclines, qui sont souvent quasi-bidimensionnelles, la nouveauté est que l’écoulement est tridimensionnel et la dynamique est régie par les équations de Boussinesq tri-périodiques. Dans un tel écoulement la turbulence, les ondes et les instabilités sont entremêlées. Le problème linéaire sera étudié grâce à la Théorie de Distorsion Rapide (TDR) et l’aspect non-linéaire grâce à des Simulations Numériques Directes (SND) pseudo-spectrales. Les résultats issus de la TDR et des SND, de par leur homogénéité spatiale, sont une base de connaissance directement utilisable pour l’élaboration de modèles de sous-maille. Les structures tourbillonnaires sont étudiées grâce au skewness de vorticité verticale et à des visualisations tridimensionnelles, ce qui permet d’observer une prédominance des cyclones par rapport aux anticyclones dans la configuration induite par l’écoulement porteur<br>This study is about turbulent fluctuation in sheared, stratified and rotating base flows with respect to the admissibility condition on the mean flow. This admissibility condition is known as thermal wind relation for meteorologists and thermohaline circulation for oceanographers. In contrast to the previous study on baroclinic instability, mainly quasi-two-dimensional, the advance is that the flow is three-dimensional and the dynamics is given by the three-periodic Boussinesq equations. In such a flow, turbulence, waves and instability are interleaved. The linear problem will be tracked by Rapid Distortion Theory (RDT) and the non-linear aspect by pseudo-spectral Direct Numerical Simulation (DNS). Results coming from TDR and SND, due to their spatial homogeneity, are a knowledge database that can be directly used for sub-grid scale parameterisation. The vortex structures are investigated by the vertical vorticity skewness and with three-dimensional visualisations. In the simulated flow we find that cyclonic vorties are predominant over anticyclonic structure
APA, Harvard, Vancouver, ISO, and other styles
9

Bordes, Guilhem. "Interactions non-linéaires d'ondes et tourbillons en milieu stratifié ou tournant." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00733175.

Full text
Abstract:
Les ondes gravito-inertielles jouent un rôle majeur dans les échanges d'énergie globaux sur la planète. Si la génération des ondes est bien connue dans l'atmosphère et l'océan, le devenir de ces ondes au cours de leur propagation n'est pas complètement défini aujourd'hui. Ces ondes peuvent interagir de façon non-linéaire avec elles-mêmes et créer des structures de plus petite échelle qui vont se dissiper plus facilement. Ainsi, le phénomène d'instabilité paramétrique sous-harmonique (PSI), a été étudié de façon expérimentale. Nous avons effectué la première mise en évidence expérimentale de l'interaction de trois ondes planes inertielles bi-dimensionnelles, sous la forme d'une triade résonnante. Cette étude améliore en outre la compréhension de la turbulence en rotation. Les ondes internes peuvent aussi créer, ou interagir avec des écoulements lents de grande échellequi peuvent modifier la biodiversité au fond des océans. Nous avons mis en évidence une situation expérimentale à l'origine d'un tel écoulement moyen induit par les ondes et, à l'aide d'un modèle théorique simplifié, nous avons expliqué la formation de ces écoulements. Enfin, on étudie également des tourbillons en fluide stratifié pour permettre de futures études sur l'interaction d'ondes gravito-inertielles avec des tourbillons.
APA, Harvard, Vancouver, ISO, and other styles
10

Bonnici, Julien. "Décorrélation verticale d'un tourbillon soumis à un champ de cisaillement dans un fluide fortement stratifié." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX024/document.

Full text
Abstract:
Cette thèse étudie, théoriquement et numériquement, la décorrélation verticale d’un tourbillon initialement vertical par un écoulement externe cisaillé sinusoïdalement dans un fluide stratifié. Il a été proposé qu’un tel mécanisme devrait déclencher des instabilités de cisaillement et ainsi contribuer à la production de petites échelles en turbulence fortement stratifiée, que l’on rencontre dans l’atmosphère et les océans dans une gamme d’échelles où la force de Coriolis est négligeable.La première partie de la thèse étudie les évolutions des énergies et enstrophie totales du tourbillon calculées au moyen de Simulations Numériques Directes (DNS), en fonction des paramètres de contrôle. Cette analyse montre que la dynamique est différente de celle des écoulements libres en déclin : du fait de la présence du cisaillement ambiant, la condition de saturation entre les termes d’étirement et de dissipation dans le bilan d’enstrophie globale implique que l’enstrophie maximale du tourbillon sature proportionnellement à $Re^{2/3}$, où $Re$ est le nombre de Reynolds, au lieu de $Re$. Néanmoins, cette condition de saturation ne rend pas compte de l’effet observé de la stratification.Afin de l’expliquer, la dynamique locale du tourbillon a été étudiée au travers de deux analyses asymptotiques présentées dans une deuxième partie. Une étude pour temps courts prouve que la réponse initiale du tourbillon est non-hydrostatique quelle que soit la stratification. Une autre analyse pour grande longueur d’onde fournit les équations qui décrivent l’évolution de la vitesse angulaire du tourbillon et des déformations de son axe. L’excitation d’ondes internes au début de l’évolution est à l’origine du régime non-hydrostatique initial. Le tourbillon est principalement advecté dans la direction du cisaillement ambiant mais aussi perpendiculairement du fait de son auto-induction. Sa vitesse angulaire décroît à cause d’effets dynamique et visqueux. La décroissance dynamique est dûe à un resserrement des lignes isopycnes dans le cœur du tourbillon, qui implique une atténuation de la vorticité verticale afin que la vorticité potentielle se conserve.Dans une troisième partie, des DNS révèlent que l’instabilité de cisaillement se développe seulement lorsque la stratification est modérée et la longueur d’onde du cisaillement ambiant suffisamment petite. Les résultats numériques sont comparés aux prédictions asymptotiques. En particulier, les évolutions du cisaillement vertical de vitesse horizontale et du gradient vertical de flottabilité sont prédites de manière fine et exhaustive par l’analyse asymptotique pour grande longueur d’onde lorsque le nombre de Froude est petit. Le nombre de Richardson asymptotique admet un minimum qui n’est pratiquement jamais inférieur au seuil critique $1/4$ nécessaire au déclenchement de l’instabilité de cisaillement. La saturation du cisaillement vertical est dûe au déclin du tourbillon dans les régions où le cisaillement ambiant est maximal. Ces résultats suggèrent que l’instabilité de cisaillement est difficilement déclenchée par des processus de décorrélation dans les écoulements fortement stratifiés, contredisant ainsi les conjectures précédemment formulées dans la littérature<br>This thesis investigates, theoretically and numerically, the vertical decorrelation of an initially vertical vortex by an ambient sinusoidal shear flow in a stratified fluid. It has been conjectured that such process should trigger the shear instability and, as such, contribute to the generation of small scales in strongly stratified turbulence. This type of turbulence is encountered in the atmosphere and the oceans in an intermediate range of scaleswhere Coriolis effects are negligible.The first part analyses the evolutions of the total energy and enstrophy of the vortex in Direct Numerical Simulations (DNS) as functions of the control parameters. This study reveals that the dynamics differs from freely decaying flows: because of the presence of the ambient shear flow, the balance between stretching and dissipation terms in the global enstrophy budget implies that the maximum enstrophy of the vortex scales as $Re^{2/3}$, where $Re$ is the Reynolds number, instead of simply $Re$. However, such simplified balance does not account for the observed effect of the stratification.In order to overcome this difficulty, the local dynamics of the vortex has been investigated by means of two asymptotic analyses, presented in the second part. A short-time analysis first proves that the initial response of the vortex is non-hydrostatic regardless of the stratification. A long-wavelength analysis provides governing equations for the evolution of the angular velocity of the vortex and the deformations of its axis. Internal waves are excited at the start-up of the motion, explaining the initial non-hydrostatic regime. The vortex is mostly advected in the direction of the shear flow but also perpendicularly owing to the self-induced motion. Its angular velocity decays because of dynamic and viscous effects. The former effect is due to the squeezing of the isopycnals in the vortex core which implies a decrease of the vertical vorticity to conserve potential vorticity.In a third part, the DNS show that the shear instability is only triggered if the Froude number is moderate and the wavelength of the shear small enough. The numerical results are compared to the asymptotic predictions. In particular, the evolutions of the vertical shear of horizontal velocity and of the vertical buoyancy gradient for small Froude number are comprehensively and finely captured by the long-wavelength asymptotic predictions. The minimum value of the asymptotic Richardson number almost never goes below the critical threshold $1/4$ necessary for the development of the shear instability. The saturation of the vertical shear is due to the decay of the vortex in the regions of high ambient shear. These results suggest that the shear instability is not easilytriggered by decorrelation processes in strongly stratified flows in contradiction with previous conjectures
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Fluide stratifié"

1

Voropayev, Sergey I., and Yakov D. Afanasyev. Vortex Structures in a Stratified Fluid. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-2859-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beckers, Marcel. Dynamics of vortices in a stratified fluid. University of Eindhoven, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baines, Peter G. Topographic effects in stratified flows. Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1924-, Sveshnikov A. G., ed. Zadachi dinamiki stratifit͡s︡irovannykh zhidkosteĭ. "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miyazaki, Takeshi. Vortices, waves and turbulence in a rotating stratified fluid. Center for Global Environmental Research, National Institute for Environmental Studies, Japan, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Voropayev, Sergey I. Vortex structures in a stratified fluid: Order from chaos. Chapman & Hall, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Voropaev, Sergeĭ I. Vortex structures in a stratified fluid: Order from chaos. Chapman & Hall, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sokolovskiy, Mikhail A., and Jacques Verron. Dynamics of Vortex Structures in a Stratified Rotating Fluid. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00789-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Koba, Hajime. Nonlinear stability of Ekman boundary layers in rotation stratified fluids. American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kowalewski, Joseph A. The resonant interaction of a submarine's wake with a stratified fluid. Naval Postgraduate School, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Fluide stratifié"

1

Feireisl, Eduard, and Antonín Novotný. "Stratified Fluids." In Singular Limits in Thermodynamics of Viscous Fluids. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63781-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pedersen, Flemming Bo. "The Motion of Non-Miscible Stably Stratified Fluids." In Environmental Hydraulics: Stratified Flows. Springer-Verlag, 2013. http://dx.doi.org/10.1002/9781118669709.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pedersen, Flemming Bo. "The Motion of Non-Miscible Stably Stratified Fluids." In Environmental Hydraulics: Stratified Flows. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-86600-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brethouwer, G., P. Billant, and E. Lindborg. "Simulation of Strongly Stratified Fluids." In IUTAM Symposium on Computational Physics and New Perspectives in Turbulence. Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6472-2_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Özsoy, Emin. "Boundary Layers in Stratified Fluids." In Geophysical Fluid Dynamics II. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74934-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bo Pedersen, Flemming. "A Multipurpose Stratified Flow Flume." In Environmental Hydraulics: Stratified Flows. Springer-Verlag, 2013. http://dx.doi.org/10.1002/9781118669709.ch22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pedersen, Flemming Bo. "A Multipurpose Stratified Flow Flume." In Environmental Hydraulics: Stratified Flows. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-86600-5_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schumann, U. "Correlations in homogeneous stratified shear turbulence." In Fluid- and Gasdynamics. Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-9310-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kelbert, Mark, and Igor Sazonov. "Pulses in Stratified Media." In Pulses and Other Wave Processes in Fluids. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8644-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spedding, G. R. "Vortex Wakes in Stably-Stratified Fluids." In Fluid Mechanics and Its Applications. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4601-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fluide stratifié"

1

Matoušek, Václav, Jan Krupička, Jiří Konfršt, and Pavel Vlasák. "Effect of Pipe Inclination on Solids Distribution in Partially Stratified Slurry Flow." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5397.

Full text
Abstract:
Abstract Partially stratified flows like flows of sand-water slurries exhibit non-uniform distribution of solids (expressed as a vertical profile of local volumetric concentration) in a pipe cross section. The solids distribution in such flows is sensitive to pipe inclination. The more stratified the flow is the more sensitive its concentration profile is to the pipe slope. In general, the distribution tends to become more uniform (less stratified) if the inclination angle increases from zero (horizontal pipe) to positive values (ascending pipe) up to 90 degree (vertical pipe). In a pipe inclined to negative angles (descending pipe) the development is different. The flow tends to stratify more if it changes from horizontal flow to descending flow down to the angle of about −35 degree. If the angle further decreases towards −90 degree, then the flow becomes less stratified reaching uniform distribution at the vertical position. This also means that the same flow exhibits a very different degree of stratification in ascending and descending pipes inclined to the same (mild) slope say between ±10 and ±40 degree. The rather complex development of the solids distribution with the variation of the inclination of pipe is insufficiently documented experimentally and described theoretically in predictive models for a concentration profile in partially stratified flow. In order to extend the existing limited data set with experimental data for partially stratified flow of medium sand slurry, we have carried out a laboratory experiment with the slurry of narrow graded fraction of sand with the mean grain size of 0.55 mm in our test loop with an invert U-tube inclinable to arbitrary angle between 0 and 90 degree. A pipe of the loop has an internal diameter of 100 mm. Both legs of the U-tube have a measuring section over which differential pressures are measured. Radiometric devices mounted to both measuring sections sense concentration profiles across a pipe cross section. Furthermore, the discharge of slurry is measured in the test loop. In the paper, experimental results are presented for various inclination angles with a small step between 0 and ±45 degree and a development in the shape of the concentration profiles with the changing inclination angle is analyzed. For the analysis, it is critical to distinguish between suspended load and contact load in the flow as the two loads tend to react differently to the flow inclination. The measured concentration profiles and pressure drops are compared with predictions by the layered model adapted for taking the flow inclination into account.
APA, Harvard, Vancouver, ISO, and other styles
2

Kraft, Wayne N., and Malcolm J. Andrews. "Experimental Investigation of Stratified, Buoyant Wakes." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56623.

Full text
Abstract:
The development of a buoyant plane wake has been investigated experimentally. A water channel has been used as a statistically steady experiment to investigate the plane wakes. Parallel streams of hot and cold water are initially separated by a splitter plate. The streams are oriented such that the cold fluid is above the hot fluid, resulting in an unstable stratification. At the end of the splitter plate, the two streams are allowed to mix and a buoyancy driven mixing layer develops. Downstream of the splitter plate, growth of the turbulent buoyancy-driven mix is disrupted by a cylinder. The cylinder is located at the centerline of the mixing layer and associated wake. As a result the dynamic flows of the plane wake and buoyancy driven mixing layer interact. Particle image velocimetry (PIV), and a high-resolution thermocouple system are used to measure the response of the plane wake to buoyancy driven turbulence. Velocity and density measurements are used as a basis from which we describe the transition, and return to equilibrium, of the buoyancy driven mixing layer. We found for wakes where buoyancy is driving the motion, a remarkably fast recovery of a Rayleigh-Taylor mix in the wake region.
APA, Harvard, Vancouver, ISO, and other styles
3

Yalim, Jason, Bruno D. Welfert, and Juan M. Lopez. "Video: Wave-breaking in a stratified fluid." In 73th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2020. http://dx.doi.org/10.1103/aps.dfd.2020.gfm.v0082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Riley, James, and Stephen de Bruyn Kops. "Recent progress on turbulence in density-stratified fluids." In 15th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chashechkin, Yuli D., and Ia Zagumennyi. "STRATIFIED FLOW FINE STRUCTURE AROUND A SLOPING PLATE." In Topical Problems of Fluid Mechanics 2017. Institute of Thermomechanics, AS CR, v.v.i., 2017. http://dx.doi.org/10.14311/tpfm.2017.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nakayama, Hideyuki, Haruhiko Mori, Jun Shimizu, et al. "Wave-Induced Streaming in Vertically-Excited, Stratified Fluids." In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49314.

Full text
Abstract:
Non-zero time averaged flows can be induced in fluctuating flows. Shimizu et al. found such time-averaged streaming to occur in stratified fluids excited in a vertical, stationary cylinder at a frequency close to the natural frequency of the axisymmetric interface wave [1]. PIV measurements have revealed intermittent formation of a stagnation region close the fluid-fluid interface that enables a jet-like flow departing from the center of the interface to be sustained over cycles. The jet-like flow induces a recirculating streaming flow that extends several diameters away from the interface. Difficulty still remains in quantifying experimentally the detailed flow structure and defining the driving mechanisms, since the streaming is more than one order of magnitude smaller than the forced oscillating flow. The present paper presents PIV data that show temporal evolution of the flow in each cycle, the effect of fluid viscosities and the excitation frequency and amplitude.
APA, Harvard, Vancouver, ISO, and other styles
7

Bayareh, M., S. Dabiri, and A. M. Ardekani. "Interaction Between a Pair of Drops Ascending in a Linearly Stratified Fluid." In ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fedsm2013-16046.

Full text
Abstract:
In this paper, we provide fully resolved three-dimensional direct numerical simulations of ascending motion of a pair of drops in a linearly stratified fluid using a finite-volume/front-tracking method. We study the density stratification effects on the rise velocity of drops and their stable position for different initial alignments. Due to the formation of a jet in the lee of a single drop rising in a stratified fluid, a decrease in rise velocity (or an increase in drag) is observed compared to the homogeneous case. The hydrodynamic interaction between two drops in a linearly stratified fluid depends on the properties of both fluids and initial orientation of the two drops. For the case of drops rising side by side, the lateral separation of drops is suppressed due to stratification effects. In contrast to homogeneous case, two nearly spherical drops collide with each other at low Froude numbers and oscillate around their neutrally buoyant density level. Two spherical drops rising in tandem in a linearly stratified fluid at finite Reynolds number regime undergo drafting, kissing, and tumbling unlike their counterpart in a homogenous fluid.
APA, Harvard, Vancouver, ISO, and other styles
8

Delisi, D., R. Robins, D. Delisi, and R. Robins. "Small-scale instabilities in trailing wake vortices in a stratified fluid." In 28th Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

SUZUKI, MASAHIRO, and KUNIO KUWAHARA. "Stratified flow past a bell-shaped hill." In 20th Fluid Dynamics, Plasma Dynamics and Lasers Conference. American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sutherland, B. R., and D. A. Aguilar. "Stratified flow over topography: wave generation and boundary layer separation." In ADVANCES IN FLUID MECHANICS 2006. WIT Press, 2006. http://dx.doi.org/10.2495/afm06032.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fluide stratifié"

1

Voropayev, S. I., S. A. Smirnov, I. A. Filippov, and D. L. Boyer. Large Eddies and Vortex Streets Behind Moving Jets in a Stratified Fluid. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada389581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Voropayev, Sergey I., and Don L. Boyer. Modeling and Control of Large Eddies Generated by Maneuvering Self-Propelled Bodies in Stratified Fluids. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada389903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Domaradzki, Julian A. The Near Wake of Bluff Bodies in Stratified Fluids and the Emergence of Late Wake Characteristics. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada531692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography