Journal articles on the topic 'Fluidi Biologici'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fluidi Biologici.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Maciel, Danilo Pereira Garcia, José Leandro Tomaz Medeiros, Mariana Freitas da Silva, et al. "Profilo epidemiologico degli incidenti con esposizione a materiali biologici verificatisi nei lavoratori nello Stato di Amapá, Amazzonia, Brasile, dal 2015 al 2019." Núcleo do Conhecimento 04, no. 03 (2021): 127–41. https://doi.org/10.32749/nucleodoconhecimento.com.br/salute/esposizione-a-materiali.
Full textHadjiaghaie Vafaie, Reza, Ali Fardi-Ilkhchy, Sobhan Sheykhivand, and Sebelan Danishvar. "Theoretical and Experimental Study of an Electrokinetic Micromanipulator for Biological Applications." Biomimetics 10, no. 1 (2025): 56. https://doi.org/10.3390/biomimetics10010056.
Full textAkkoyun, Fatih, and Adem Özçelik. "A Battery-Powered Fluid Manipulation System Actuated by Mechanical Vibrations." Actuators 11, no. 5 (2022): 116. http://dx.doi.org/10.3390/act11050116.
Full textWalsh, E. J., C. King, R. Grimes, A. Gonzalez, and D. Ciobanu. "Compatibility of Segmenting Fluids in Continuous-Flow Microfluidic PCR." Journal of Medical Devices 1, no. 4 (2007): 241–45. http://dx.doi.org/10.1115/1.2812426.
Full textSwain, Michael V. "ROLE OF FLUID ON THE CONTACT DEFORMATION RESPONSE OF BIOLOGICAL TISSUE." Acta Polytechnica CTU Proceedings 27 (June 11, 2020): 22–31. http://dx.doi.org/10.14311/app.2020.27.0022.
Full textRibeiro, J. C., G. Minas, P. Turmezei, R. F. Wolffenbuttel, and J. H. Correia. "A SU-8 fluidic microsystem for biological fluids analysis." Sensors and Actuators A: Physical 123-124 (September 2005): 77–81. http://dx.doi.org/10.1016/j.sna.2005.03.032.
Full textShaw, Julie LV, and Eleftherios P. Diamandis. "Distribution of 15 Human Kallikreins in Tissues and Biological Fluids." Clinical Chemistry 53, no. 8 (2007): 1423–32. http://dx.doi.org/10.1373/clinchem.2007.088104.
Full textNelson, Arif Z., Binu Kundukad, Wai Kuan Wong, Saif A. Khan, and Patrick S. Doyle. "Embedded droplet printing in yield-stress fluids." Proceedings of the National Academy of Sciences 117, no. 11 (2020): 5671–79. http://dx.doi.org/10.1073/pnas.1919363117.
Full textGome, Gilad, Ofra Benny, Oded Shoseyov, and Jonathan Giron. "Design Principles for Laser-Printed Macrofluidics." Inventions 9, no. 4 (2024): 68. http://dx.doi.org/10.3390/inventions9040068.
Full textGouello, Audrey, Laura Henry, Djamel Chadli-Benhemani, et al. "Evaluation of the Microbiome Identification of Forensically Relevant Biological Fluids: A Pilot Study." Diagnostics 14, no. 2 (2024): 187. http://dx.doi.org/10.3390/diagnostics14020187.
Full textMolina, R., X. Filella, J. Jo, C. Agusti, and A. M. Ballesta. "CA 125 in Biological Fluids." International Journal of Biological Markers 13, no. 4 (1998): 224–30. http://dx.doi.org/10.1177/172460089801300410.
Full textLi, Suyi, and K. W. Wang. "On the dynamic characteristics of biological inspired multicellular fluidic flexible matrix composite structures." Journal of Intelligent Material Systems and Structures 23, no. 3 (2011): 291–300. http://dx.doi.org/10.1177/1045389x11424218.
Full textToma, Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky, and Wenbin Mao. "Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics." Biology 10, no. 3 (2021): 185. http://dx.doi.org/10.3390/biology10030185.
Full textStamenkovic, Zivojin, Milos Kocic, Jasmina Bogdanovic-Jovanovic, and Jelena Petrovic. "Nano and micropolar MHD fluid flow and heat transfer in inclined channel." Thermal Science, no. 00 (2023): 170. http://dx.doi.org/10.2298/tsci230515170k.
Full textTerekhina, N. A., S. E. Reuk, and T. I. Atamanova. "Comparative analysis of ceruloplasmin level in biological fluids at herpes infection." Kazan medical journal 94, no. 5 (2013): 752–54. http://dx.doi.org/10.17816/kmj1936.
Full textTalalay, Pavel, Zhengyi Hu, Huiwen Xu, et al. "Environmental considerations of low-temperature drilling fluids." Annals of Glaciology 55, no. 65 (2014): 31–40. http://dx.doi.org/10.3189/2014aog65a226.
Full textDhayal, Marshal, Chealho So, Jeong Sik Choi, and Jin Jun. "Control of Bio-MEMS Surface Chemical Properties in Micro Fluidic Devices for Biological Applications." Journal of Nanoscience and Nanotechnology 6, no. 11 (2006): 3494–98. http://dx.doi.org/10.1166/jnn.2006.17968.
Full textLi, Feng, Niall P. Macdonald, Rosanne M. Guijt, and Michael C. Breadmore. "Multimaterial 3D Printed Fluidic Device for Measuring Pharmaceuticals in Biological Fluids." Analytical Chemistry 91, no. 3 (2018): 1758–63. http://dx.doi.org/10.1021/acs.analchem.8b03772.
Full textHinghofer-Szalkay, H. "Volume and density changes of biological fluids with temperature." Journal of Applied Physiology 59, no. 6 (1985): 1686–89. http://dx.doi.org/10.1152/jappl.1985.59.6.1686.
Full textShatokhina, Svetlana N., Vadim V. Zar, Mikhail V. Zar, and Vladimir N. Shabalin. "Structural features of non-cellular tissues of the human body during ochronosis." N.N. Priorov Journal of Traumatology and Orthopedics 27, no. 4 (2020): 46–52. http://dx.doi.org/10.17816/vto46934.
Full textNAZARENKO, N. N., and A. G. KNYAZEVA. "PHYSICAL PROPERTIES OF FILTRATION OF A TWO-PHASE BIOLOGICAL LIQUID IN A CYLINDRICAL PORE." Izvestiya vysshikh uchebnykh zavedenii. Fizika 67, no. 8 (2024): 86–93. https://doi.org/10.17223/00213411/67/8/9.
Full textLi, Chuanbin, Boyang Qin, Arvind Gopinath, Paulo E. Arratia, Becca Thomases, and Robert D. Guy. "Flagellar swimming in viscoelastic fluids: role of fluid elastic stress revealed by simulations based on experimental data." Journal of The Royal Society Interface 14, no. 135 (2017): 20170289. http://dx.doi.org/10.1098/rsif.2017.0289.
Full textChaulin, A. M., L. S. Karslyan, E. V. Bazyuk, D. A. Nurbaltaeva, and D. V. Duplyakov. "Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids." Kardiologiia 59, no. 11 (2019): 66–75. http://dx.doi.org/10.18087/cardio.2019.11.n414.
Full textBartsch de Torres, Heike, Christian Rensch, Torsten Thelemann, J. Müller, and M. Hoffmann. "Fully Integrated Bridge-Type Anemometer in LTCC-Based Microfluidic Systems." Advances in Science and Technology 54 (September 2008): 401–4. http://dx.doi.org/10.4028/www.scientific.net/ast.54.401.
Full textMuhammad chimo, Salihu, Ibrahim Garba Bassi, and M. Abdulhameed. "ATANGANA – BALEANU FRACTIONAL MODELLING OF OLDROYD–B FLUID FLOW AND HEAT TRANSFER IN A CAPILLARY TUBE." FULafia Journal of Science and Technology 9, no. 1 (2025): 34–46. https://doi.org/10.62050/fjst2025.v9n1.350.
Full textLyons-Darden, Tara, Katherine E. Heim, Li Han, Laura Haines, Christie M. Sayes, and Adriana R. Oller. "Bioaccessibility of Metallic Nickel and Nickel Oxide Nanoparticles in Four Simulated Biological Fluids." Nanomaterials 14, no. 10 (2024): 877. http://dx.doi.org/10.3390/nano14100877.
Full textMichetti, Fabrizio, and Diego Gazzolo. "S100B Protein in Biological Fluids: A Tool for Perinatal Medicine." Clinical Chemistry 48, no. 12 (2002): 2097–104. http://dx.doi.org/10.1093/clinchem/48.12.2097.
Full textIkeda, Mayumi, Yu Ishima, Victor T. G. Chuang, et al. "Distribution of Polysulfide in Human Biological Fluids and Their Association with Amylase and Sperm Activities." Molecules 24, no. 9 (2019): 1689. http://dx.doi.org/10.3390/molecules24091689.
Full textPoroshina, Anastasia, and Vasily Vedeneev. "Existence and uniqueness of the stationary state of elastic tubes conveying power law fluid." Russian journal of biomechanics. 22, no. 2 (2018): 169–93. http://dx.doi.org/10.15593/rjbiomech/2018.2.05.
Full textSùrensen, Per Soelberg. "Biological markers in body fluids for activity and progression in multiple sclerosis." Multiple Sclerosis Journal 5, no. 4 (1999): 287–90. http://dx.doi.org/10.1177/135245859900500416.
Full textLuo, Nianan, Jiangbin Li, Rui Dong, and Jianguo Lu. "Exosome-Based Theranostics for Liver Diseases." Disease Markers 2022 (November 2, 2022): 1–5. http://dx.doi.org/10.1155/2022/7888906.
Full textDhayal, Marshal, Jeong Sik Choi, and Cheal Ho So. "Biological fluid interaction with controlled surface properties of organic micro-fluidic devices." Vacuum 80, no. 8 (2006): 876–79. http://dx.doi.org/10.1016/j.vacuum.2005.11.068.
Full textNikolof, Todd, Mahesh Prakash, Paul W. Cleary, and Joseph Bertolini. "Fluid flow in a spiral device used for irradiation of biological fluids." Biotechnology Progress 29, no. 2 (2013): 359–67. http://dx.doi.org/10.1002/btpr.1676.
Full textShepard, Robin N., Jody Schock, Kevin Robertson, et al. "Quantitation of Human Immunodeficiency Virus Type 1 RNA in Different Biological Compartments." Journal of Clinical Microbiology 38, no. 4 (2000): 1414–18. http://dx.doi.org/10.1128/jcm.38.4.1414-1418.2000.
Full textSong, Peng Yun, and Ai Lin Ma. "The Concept and the Contents of Process Fluid Mechanics." Applied Mechanics and Materials 723 (January 2015): 194–97. http://dx.doi.org/10.4028/www.scientific.net/amm.723.194.
Full textIbrahim, Ayad. "Analysis of Electric Field Influence on Heat and Mass Transfer in Non-Newtonian Fluid Flow over a Non-Uniform Surface." KHWARIZMIA 2025 (June 30, 2025): 23–29. https://doi.org/10.70470/khwarizmia/2025/003.
Full textPepe, Vinicius, Antonio F. Miguel, Flávia Zinani, and Luiz Rocha. "Numerical Study of Carreau Fluid Flow in Symmetrically Branched Tubes." Symmetry 17, no. 1 (2024): 48. https://doi.org/10.3390/sym17010048.
Full textSun, Baichuan, Jiang Peng, Shoufeng Wang, et al. "Applications of stem cell-derived exosomes in tissue engineering and neurological diseases." Reviews in the Neurosciences 29, no. 5 (2018): 531–46. http://dx.doi.org/10.1515/revneuro-2017-0059.
Full textPinto-Pino, Agatha, and Claudia Trejo-Soto. "Filling phenomena in microfluidics and front microrheology of biological fluids." Journal of Physics: Conference Series 2839, no. 1 (2024): 012018. http://dx.doi.org/10.1088/1742-6596/2839/1/012018.
Full textPalchetti, S., D. Pozzi, M. Mahmoudi, and G. Caracciolo. "Exploitation of nanoparticle–protein corona for emerging therapeutic and diagnostic applications." Journal of Materials Chemistry B 4, no. 25 (2016): 4376–81. http://dx.doi.org/10.1039/c6tb01095d.
Full textBorůvková, K., T. Bakalova, L. Voleský, and P. Louda. "The Influence of Nanoadditives on the Biological Properties and Chemical Composition of Process Fluids." Advances in Materials Science 15, no. 4 (2015): 59–66. http://dx.doi.org/10.1515/adms-2015-0023.
Full textWieslander, Anders, Torbjörn Linden, Barbara Musi, Ola Carlsson, and Reinhold Deppisch. "Biological Significance of Reducing Glucose Degradation Products in Peritoneal Dialysis Fluids." Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis 20, no. 5_suppl (2000): 23–27. http://dx.doi.org/10.1177/089686080002005s05.
Full textWu, Chenjun, Qingxu Zhang, Xinpeng Fan, Yihu Song, and Qiang Zheng. "Magnetorheological elastomer peristaltic fluid conveying system for non-Newtonian fluids with an analogic moisture loss process." Journal of Intelligent Material Systems and Structures 30, no. 13 (2019): 2013–23. http://dx.doi.org/10.1177/1045389x19853625.
Full textDollet, Benjamin, Philippe Marmottant, and Valeria Garbin. "Bubble Dynamics in Soft and Biological Matter." Annual Review of Fluid Mechanics 51, no. 1 (2019): 331–55. http://dx.doi.org/10.1146/annurev-fluid-010518-040352.
Full textChen, Dilin, Jie Li, Haiwen Chen, Lai Zhang, Hongna Zhang, and Yu Ma. "Electroosmotic Flow Behavior of Viscoelastic LPTT Fluid in a Microchannel." Micromachines 10, no. 12 (2019): 881. http://dx.doi.org/10.3390/mi10120881.
Full textVaneev, A. N., A. V. Alova, A. S. Erofeev, et al. "Detecting reactive oxygen species in biological fluids by platinum nanoelectrode applying amperometric method." NANOMEDICINE, no. 6 (September 28, 2018): 144–49. http://dx.doi.org/10.24075/brsmu.2018.045.
Full textLiu, Hanwen. "Collective Behavior of COMSOL-Based Microrobot Swarms in Various Fluids." Advances in Engineering Technology Research 12, no. 1 (2024): 755. https://doi.org/10.56028/aetr.12.1.755.2024.
Full textD'Alessandro, Annamaria, Domenico Ciavardelli, Anna Pastore, et al. "Cerebrospinal Fluid Levels of AFP and hCG: Validation of the Analytical Method and Application in the Diagnosis of Central Nervous System Germ Cell Tumors." Diagnostics 11, no. 11 (2021): 1980. http://dx.doi.org/10.3390/diagnostics11111980.
Full textWeber, Jessica A., David H. Baxter, Shile Zhang, et al. "The MicroRNA Spectrum in 12 Body Fluids." Clinical Chemistry 56, no. 11 (2010): 1733–41. http://dx.doi.org/10.1373/clinchem.2010.147405.
Full textWinskas, John T., Hao Wang, Arsenii Zhdanov, et al. "Different Regimes of Opto-fluidics for Biological Manipulation." Micromachines 10, no. 12 (2019): 802. http://dx.doi.org/10.3390/mi10120802.
Full text