Academic literature on the topic 'Fluorapatite'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluorapatite.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fluorapatite"
Wang, Xianchen, Qin Zhang, Song Mao, and Wei Cheng. "A Theoretical Study on the Electronic Structure and Floatability of Rare Earth Elements (La, Ce, Nd and Y) Bearing Fluorapatite." Minerals 9, no. 8 (August 20, 2019): 500. http://dx.doi.org/10.3390/min9080500.
Full textZhang, Jingkun, Zhiyun Xiao, and Hongbo Zhang. "Selective Flotation Behavior of Dolomite from Fluorapatite Using Hydroxy Ethylene Diphosphonic Acid as High-Efficiency Depressant." Minerals 12, no. 12 (December 19, 2022): 1633. http://dx.doi.org/10.3390/min12121633.
Full textGhaemi, Mohammad, Sergiy Sayenko, Volodymyr Shkuropatenko, Anna Zykova, Kateryna Ulybkina, Olena Bereznyak, Andrzej Krupa, and Mirosław Sawczak. "The effect of Sr and Mg substitutions on structure, mechanical properties and solubility of fluorapatite ceramics for biomedical applications." Processing and Application of Ceramics 16, no. 3 (2022): 218–29. http://dx.doi.org/10.2298/pac2203218g.
Full textKuo, Tsung-Yuan, Chi-Sheng Chien, Cheng-Wei Liu, and Tzer-Min Lee. "Comparative investigation into effects of ZrO2 and Al2O3 addition in fluorapatite laser-clad composite coatings on Ti6Al4V alloy." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 233, no. 2 (December 10, 2018): 157–69. http://dx.doi.org/10.1177/0954411918816113.
Full textMyšľan, Pavol, Peter Ružička, Tomáš Mikuš, and Miroslav Hain. "3D distribúcia minerálnych inklúzií v granátoch z lokalít Lesné - Potičky a Beňatinská voda (Slovenská republika)." Bulletin Mineralogie Petrologie 28, no. 2 (2020): 246–60. http://dx.doi.org/10.46861/bmp.28.246.
Full textGall, Quentin, William J. Davis, David G. Lowe, and Quinn Dabros. "Diagenetic apatite character and in situ ion microprobe U–Pb age, Keeseville Formation, Potsdam Group, New York State." Canadian Journal of Earth Sciences 54, no. 7 (July 2017): 785–97. http://dx.doi.org/10.1139/cjes-2016-0195.
Full textZheng, Huifang, Yingxin Chen, Xiaoqing Weng, Yanfeng Jin, Richard M. Kasomo, and Shunfu Ao. "Flotation Separation of Dolomite from Fluorapatite Using Sodium Dodecyl Benzene Sulfonate as the Efficient Collector under Low Temperature." Minerals 12, no. 2 (February 10, 2022): 228. http://dx.doi.org/10.3390/min12020228.
Full textThủy, Nguyễn Thị, and Nguyễn Thị Hồng Nụ. "Characteristics of phosphate phase (fluorapatite and monazite) in the South Nam Xe carbonatites, Northwest Vietnam." Hue University Journal of Science: Earth Science and Environment 126, no. 4B (June 2, 2017): 97. http://dx.doi.org/10.26459/hueuni-jese.v126i4b.4293.
Full textTulyaganov, D. U., and R. Ya Khodakovskaya. "Glass-ceramic biomaterials based on the fluorapatite-anorthite and fluorapatitie-diopside systems." Glass and Ceramics 48, no. 5 (May 1991): 221–22. http://dx.doi.org/10.1007/bf00676772.
Full textCook, Robert B. "Connoisseurs's Choice: Fluorapatite." Rocks & Minerals 68, no. 2 (April 1993): 112–14. http://dx.doi.org/10.1080/00357529.1993.9926537.
Full textDissertations / Theses on the topic "Fluorapatite"
Moorehead, Robert David. "Crystallisation in fluorapatite-fluorphlogopite glass ceramics." Thesis, University of Salford, 2011. http://usir.salford.ac.uk/26825/.
Full textKansal, Ishu. "Diopside-fluorapatite-wollastonite based bioactive glasses and glass-ceramics." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14827.
Full textBioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaOMgOP2O5SiO2F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside – fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.
Os vidros e vitrocerâmicos bioactivos são uma classe de biomateriais que induzem uma resposta especial à sua superfície quando em contacto com fluidos biológicos que conduz a uma forte ligação ao tecido vivo. Esta característica particular conjugada com uma boa aptidão para a sinterização e elevada resistência mecânica torna estes materiais ideais para a fabricação de estruturas de suporte à regeneração óssea. O trabalho apresentado nesta tese pretende dar um contributo para uma melhor compreensão das relações entre composição-estrutura-propriedades em vidros potencialmente bioactivos com composições no sistema CaOMgOP2O5SiO2F, em alguns casos com a adição de Na2O. O estudo da influência exercida pela composição do vidro na estrutura molecular, capacidade de sinterização e nível de bioactividade dos vidros fosfosilicatados foi objecto de especial atenção. As composições vítreas foram concebidas no campo da cristalização primária do pseudo sistema ternário do diópsido (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite, e estudou-se o impacto das variações composicionais na estrutura, nas propriedades e na capacidade de sinterização destes vidros. Todos os vidros investigados neste trabalho foram preparados por fusão e fritagem e caracterizados quanto à sua estrutura molecular, capacidade de sinterização, degradação química e bioactividade, usando uma grande variedade de técnicas experimentais. Ficou demonstrado que em todas as composições de vidro investigadas a rede de silicato era dominada principalmente por unidades Q2 enquanto o fosfato se encontrava coordenado em ambiente de ortofosfato. As composições de biovidros isentas de alcalinos do sistema diópsido–fluorapatite demonstram possuir excelente capacidade de sinterização e elevados níveis de bioactividade, atributos que os qualificam como materiais promissores para a fabricação de estruturas de suporte à regeneração de tecidos ósseos, enquanto os vidros bioactivos contendo alcalinos foram mais difíceis de densificar durante a sinterização e induziram citotoxicidade in vitro, não sendo candidatos ideais para a engenharia de tecidos. Uma das nossas composições de biovidro com um baixo teor de sódio foi testada com sucesso tanto in vivo como em ensaios clínicos preliminares. Mas este trabalho precisa de ser continuado e aprofundado. A dispersão de fritas moídas em meio aquoso ou outros solventes adequados, e o estudo dos factores mais relevantes que condicionam a reologia das suspensões são etapas essenciais para viabilizar o processo de fabrico de suportes porosos com estruturas hierárquicas de poros feitas por medida através de técnicas de processamento avançadas tais como o Robocasting.
Jarlbring, Mathias. "Surface reactions in aqueous suspensions of fluorapatite and iron oxides /." Luleå : Luleå University of Technology, 2006. http://epubl.ltu.se/1402-1544/2006/05/index.html.
Full textAl-Taie, Asmaa Mohammed Basil Jasim. "Development and characterisation of novel fluorapatite containing dental composite materials." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/17910/.
Full textSelvaratnam, Prashant. "Radiation damage and plutonium solid-solubility in fluorapatite nuclear waste forms." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708106.
Full textTredwin, C. J. "Sol-gel derived hydroxyapatite, fluorhydroxyapatite and fluorapatite coatings for titanium implants." Thesis, University College London (University of London), 2009. http://discovery.ucl.ac.uk/18785/.
Full textJarlbring, Mathias. "Characterisation and surface reactions of iron oxides and fluorapatite in aqueous suspensions." Licentiate thesis, Luleå, 2004. http://epubl.luth.se/1402-1757/2004/02.
Full textChappell, Joseph Caleb. "CHEMICAL AND STRUCTURAL CHARACTERIZATION OF FLUORAPATITE FROM THE POUDRETTE PEGMATITE, MONT SAINT-HILAIRE, QUEBEC, CANADA." Miami University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=miami1547221806721972.
Full textBandara, A. M. T. S. "Comparative solubility and leaching studies relevant to hydrometallurgical processing of rare earth phosphate concentrates containing fluorapatite." Thesis, Bandara, A.M.T.S. (2017) Comparative solubility and leaching studies relevant to hydrometallurgical processing of rare earth phosphate concentrates containing fluorapatite. PhD thesis, Murdoch University, 2017. https://researchrepository.murdoch.edu.au/id/eprint/38248/.
Full textALVES, Luana Cristina Feitosa. "Estudo da influência do fluoreto de cálcio na bioatividade de vidros borato." Universidade Federal do Maranhão, 2017. https://tedebc.ufma.br/jspui/handle/tede/tede/1939.
Full textMade available in DSpace on 2017-09-21T17:41:19Z (GMT). No. of bitstreams: 1 LuanaAlves.pdf: 1633592 bytes, checksum: 785a3f9aa7f3fc08d80023603f457b39 (MD5) Previous issue date: 2017-07-13
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão
Bioactive borate glass has presented superior results then bioactive silicate glasses, when compared its conversion rates in apatite and its potential of bioactivity. In this work, new Borate glasses with the basic 60B2O3 - 4P2O5 - 18Na2O – xCaF2 – (18-xCaO), com x = 0, 5 e 10 % wt were synthesized, and investigated the influence of CaF2 addition on bioactivity of samples in vitro, in a period of 28 days in a simulator of the body fluid (SBF). This bioactivity was investigated by means of X-ray diffraction (DRX), Raman Spectroscopy, FTIR and by the measure of pH. DRX measures, prior to immersion, presented wide bands, evidencing the amorphous structure of glasses. The results of density, thermal analysis, XRD, Raman and FTIR show that the addition of CaF2, until 10 % wt, did not cause significant changes in samples network structure. The thermal stability for all samples was calculated from DSC data and all presented values up to 120°C. The results of pH of SBF solution show increase from for 24 hours, which contributes to the dissolution of the outermost layer of the glass and the precipitation of apatite. In XRD data for 60B sample soaked in SBF for 7 days, there was formation of crystalline peaks, at 26° and 32° (2ϴ), in all measures. These peaks correspond to patterns of hydroxyapatite (HA). The XRD spectra in 60B5CaF and 60B10CaF, soaked in SBF for 7 days, presented peaks in 28°(2ϴ) corresponding to fluorapatite (FA), due to the presence of CaF2 in these glasses. Raman and FTIR measurements confirmed what was measured by XRD, showing characteristic peaks of HA and FA for all the samples. Results show that the prepared samples present potential for being used as biomaterials in biomedical applications, such as orthopedics, dentistry and tissue engineering.
Vidros boratos bioativos têm apresentado resultados superiores aos vidros silicatos bioativos, quando comparamos suas taxas de conversão em apatita e seu potencial de bioatividade. Neste trabalho sintetizamos novos vidros boratos com a composição básica 60B2O3 - 4P2O5 - 18Na2O – xCaF2 – (18-xCaO), com x = 0, 5 e 10 % em massa, e investigamos a influência da adição de CaF2 na bioatividade das amostras in vitro, em um período de 28 dias, em um simulador do fluído corporal (SBF). As medidas de DRX, antes da imersão, apresentaram bandas largas, comprovando a estrutura amorfa dos vidros. E verificou-se por meio das análises de Densidade, análise térmica, DRX, Raman e FTIR, que a adição de CaF2 até 10%, em massa, não provocou grandes mudanças estruturais na amostras. Por meio da calorimetria exploratória diferencial, determinamos a estabilidade térmica dos vidros que apresentaram valores acima de 120°C. A bioatividade foi investigada por meio das técnicas de difração de raios-X (DRX), espectroscopia Raman e FTIR, e pela medida do pH da solução SBF. Os resultados obtidos mostraram que, em 24h, houve um aumento no pH da solução SBF, o que contribui para a dissolução da camada mais externa do vidro e sua conversão em apatita. Nos difratogramas (DRX) para as amostras imersas por 7 dias, houve a formação de picos cristalinos, em 26° e 32° (2ϴ), em todas as amostras medidas. Esses picos correspondem aos padrões de hidroxiapatita. A presença de CaF2 na composição das amostras imersas por 7 dias apresentou picos em 28° (2ϴ) correspondendo a fluorapatita. A intensidade destes picos apresentou um aumento em função do tempo de imersão, durante todo período estudado. As medidas de Raman confirmaram os resultados do DRX, apresentando para todas as amostras espectros característicos da hidroxiapatita em 960 cm-1 . As amostras preparadas com CaF2 apresentaram picos em 965 cm-1 , que corresponde a fluorapatita. O FTIR confirmou os resultados apresentados no DRX e Raman, em que todas as amostras apresentaram um pico centrado em 1041 cm-1 para a hidroxiapatita e 1042 cm-1 característico para a fluorapatita. Os resultados demonstram que as amostras preparadas apresentam potencial para serem usados como biomateriais em aplicações biomédicas, como ortopedia, odontologia e engenharia de tecidos.
Book chapters on the topic "Fluorapatite"
Chow, Laurence C., and Milenko Markovic. "Physicochemical Properties of Fluorapatite." In Calcium Phosphates in Biological and Industrial Systems, 67–83. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5517-9_4.
Full textFong, Shirley K., Lee A. Gerrard, Brian L. Metcalfe, and Ian W. Donald. "Immobilization of Hafnium Surrogates in Fluorapatite." In Advances in Science and Technology, 2018–23. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.2018.
Full textKalinichenko, Elena A., Aleksandr B. Brik, Valentin V. Radchuk, Olga V. Frank-Kamenetskaya, and Oleksii Dubok. "Computer Simulation of Defects in Carbonate Fluorapatite and Hydroxyapatites." In Lecture Notes in Earth System Sciences, 461–77. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24987-2_35.
Full textDenissen, H. W., H. M. De Nieuport, W. Kalk, H. G. Schaeken, and A. Van Den Hooff. "Fluorapatite and Hydroxyapatite Heat-Treated Coatings for Dental Implants." In Bioceramics and the Human Body, 130–40. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2896-4_17.
Full textZimehl, R., S. F. Willigeroth, M. Hannig, and H. Frahm. "Nano-sized fluorapatite particles by controlled precipitation from heterogeneous systems." In Mesophases, Polymers, and Particles, 110–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b100311.
Full textKalinichenko, Elena A., Aleksandr B. Brik, Valentin V. Radchuk, Olga V. Frank-Kamenetskaya, and Oleksii Dubok. "Erratum to: Computer Simulation of Defects in Carbonate Fluorapatite and Hydroxyapatites." In Lecture Notes in Earth System Sciences, E1. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24987-2_41.
Full textGunduz, Oguzhan, S. Salman, S. Kayali, Gultekin Goller, I. Goker, Simeon Agathopoulos, L. S. Ozyegin, and Faik N. Oktar. "Improvement of Microstructure of Bovine Hydroxyapatite (BHA) with Machineable Fluorapatite Glass (MFG)." In Bioceramics 20, 495–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-457-x.495.
Full textGoller, Gultekin, Can Cekli, Ipek Akin, and Erdem Demirkesen. "In-Vitro Bioactivity Characterization of Sodium-Potassium Mica and Fluorapatite Containing Glass Ceramics." In Key Engineering Materials, 185–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.185.
Full textHolmgren, Allan, Willis Forsling, and Liuming Wu. "An FT-IR Study of Alizarin Red S Adsorbed at the Fluorapatite-Water Interface." In Progress in Fourier Transform Spectroscopy, 197–99. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-6840-0_31.
Full textHill, Robert G., Adam Calver, Stephen Skinner, Adam Stamboulis, and Robert V. Law. "A MAS-NMR and Combined Rietveldt Study of Mixed Calcium/Strontium Fluorapatite Glass-Ceramics." In Bioceramics 18, 305–8. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-992-x.305.
Full textConference papers on the topic "Fluorapatite"
Bonner, Jr., Carl E., Chahn C. Chess, Chandana Meegoda, Sennay Stefanos, George B. Loutts, and George E. Miller III. "Raman spectroscopic study of barium fluorapatite." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Kathleen I. Schaffers and Lawrence E. Myers. SPIE, 1999. http://dx.doi.org/10.1117/12.349236.
Full textPayne, Stephen A., William F. Krupke, Larry K. Smith, Laura D. DeLoach, and Wayne L. Kway. "Laser Properties of Yb-doped Fluorapatite." In Advanced Solid State Lasers. Washington, D.C.: OSA, 1992. http://dx.doi.org/10.1364/assl.1992.dl14.
Full textArzakantsyan, M., J. Akiyama, Y. Sato, and T. Taira. "Optical Characterization of Yb Doped Fluorapatite Anisotropic Ceramics." In Advanced Solid State Lasers. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/assl.2013.am1a.4.
Full textLoutts, G. B., C. Bonner, C. Meegoda, H. Ries, M. A. Noginov, N. Noginova, M. Curley, P. Venkateswarlu, A. Rapaport, and M. Bass. "Neodymium Doped Barium Fluorapatite: A New Efficient Laser Material." In Advanced Solid State Lasers. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/assl.1997.sc8.
Full textZhu, Yaxin, Chunhua Bai, and Guanghui Li. "Effect of initial pH value and atmosphereon fluorapatite preparation." In 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST). IEEE, 2021. http://dx.doi.org/10.1109/iaecst54258.2021.9695723.
Full textNuzulia, Nur Aisyah, Yessie Widya Sari, and Desi Riah Sari. "Synthesis of Duck Eggshells-based Fluorapatite by Using Microwave Irradiation." In 2018 1st International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BioMIC). IEEE, 2018. http://dx.doi.org/10.1109/biomic.2018.8610626.
Full textSinger, Jared W., and Marian V. Lupulescu. "REE-RICH FLUORAPATITE TEXTURES FROM EASTERN ADIRONDACK IRON ORE DEPOSITS." In 51st Annual Northeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016ne-272533.
Full textChappell, J. Caleb, and John Rakovan. "UNIQUE CRYSTAL CHEMICAL ASPECTS OF FLUORAPATITE FROM MONT SAINT-HILAIRE." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-317652.
Full textSingh, Abhas, Aravinth Ekamparam, and Surya Sujathan. "Kinetics of Transformation of Calcite to Fluorapatite Under Flow Conditions." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.8017.
Full textPeng, Kai, Jinhua Li, peng zou, Qinhan Zhang, and Yue Wang. "Synthesis and luminescent properties of rare earth doped upconversion nano-fluorapatite." In CIOP100, edited by Yue Yang. SPIE, 2018. http://dx.doi.org/10.1117/12.2506547.
Full textReports on the topic "Fluorapatite"
Bayramian, Andrew J. Development of Trivalent Ytterbium Doped Fluorapatites for Diode-Pumped Laser Applications. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/791656.
Full textDesbarats, A. J., and J. B. Percival. Hydrogeochemistry of mine tailings from a carbonatite-hosted Nb-REE deposit, Oka, Quebec, Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331256.
Full text