Journal articles on the topic 'Fluorescence contrast agents'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fluorescence contrast agents.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Celia Henry Arnaud. "Contrast agents improve fluorescence-guided surgery." C&EN Global Enterprise 98, no. 38 (2020): 11. http://dx.doi.org/10.1021/cen-09838-scicon5.
Full textZhang, Qimei, Stephen P. Morgan, Paul O’Shea, and Melissa L. Mather. "Ultrasound Induced Fluorescence of Nanoscale Liposome Contrast Agents." PLOS ONE 11, no. 7 (2016): e0159742. http://dx.doi.org/10.1371/journal.pone.0159742.
Full textLaramie, Matt, Mary Smith, Fahad Marmarchi, Lacey McNally, and Maged Henary. "Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging." Molecules 23, no. 11 (2018): 2766. http://dx.doi.org/10.3390/molecules23112766.
Full textSevick-Muraca, Eva M., Jessica P. Houston, and Michael Gurfinkel. "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents." Current Opinion in Chemical Biology 6, no. 5 (2002): 642–50. http://dx.doi.org/10.1016/s1367-5931(02)00356-3.
Full textNOTHDURFT, R., P. SARDER, S. BLOCH, J. CULVER, and S. ACHILEFU. "Fluorescence lifetime imaging microscopy using near-infrared contrast agents." Journal of Microscopy 247, no. 2 (2012): 202–7. http://dx.doi.org/10.1111/j.1365-2818.2012.03634.x.
Full textCHEN, CHAO-WEI, TIFFANY R. BLACKWELL, RENEE NAPHAS, et al. "DEVELOPMENT OF NEEDLE-BASED MICROENDOSCOPY FOR FLUORESCENCE MOLECULAR IMAGING OF BREAST TUMOR MODELS." Journal of Innovative Optical Health Sciences 02, no. 04 (2009): 343–52. http://dx.doi.org/10.1142/s1793545809000747.
Full textSaladino, Giovanni M., Nuzhet I. Kilic, Bertha Brodin, et al. "Carbon Quantum Dots Conjugated Rhodium Nanoparticles as Hybrid Multimodal Contrast Agents." Nanomaterials 11, no. 9 (2021): 2165. http://dx.doi.org/10.3390/nano11092165.
Full textGurfinkel, Michael, Shi Ke, Xiaoxia Wen, Chun Li, and Eva M. Sevick-Muraca. "Near-Infrared Fluorescence Optical Imaging and Tomography." Disease Markers 19, no. 2-3 (2004): 107–21. http://dx.doi.org/10.1155/2004/474818.
Full textDACOSTA, RALPH S., YING TANG, TUULA KALLIOMAKI, et al. "IN VIVO NEAR-INFRARED FLUORESCENCE IMAGING OF HUMAN COLON ADENOCARCINOMA BY SPECIFIC IMMUNOTARGETING OF A TUMOR-ASSOCIATED MUCIN." Journal of Innovative Optical Health Sciences 02, no. 04 (2009): 407–22. http://dx.doi.org/10.1142/s1793545809000759.
Full textChu, Chia-Hui, Shih-Hsun Cheng, Nai-Tzu Chen, Wei-Neng Liao, and Leu-Wei Lo. "Microwave-Synthesized Platinum-Embedded Mesoporous Silica Nanoparticles as Dual-Modality Contrast Agents: Computed Tomography and Optical Imaging." International Journal of Molecular Sciences 20, no. 7 (2019): 1560. http://dx.doi.org/10.3390/ijms20071560.
Full textFavril, Sophie, Eline Abma, Francesco Blasi, et al. "Clinical use of organic near-infrared fluorescent contrast agents in image-guided oncologic procedures and its potential in veterinary oncology." Veterinary Record 183, no. 11 (2018): 354. http://dx.doi.org/10.1136/vr.104851.
Full textMantareva, Vanya, Daniela Petrova, Latchezar Avramov, et al. "Long wavelength absorbing cationic Zn(II)-phthalocyanines as fluorescent contrast agents for B16 pigmented melanoma." Journal of Porphyrins and Phthalocyanines 09, no. 01 (2005): 47–53. http://dx.doi.org/10.1142/s1088424605000095.
Full textLai, Syu-Ming, Tsiao-Yu Tsai, Chia-Yen Hsu, Jai-Lin Tsai, Ming-Yuan Liao, and Ping-Shan Lai. "Bifunctional Silica-Coated Superparamagnetic FePt Nanoparticles for Fluorescence/MR Dual Imaging." Journal of Nanomaterials 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/631584.
Full textLuo, Dong, Xinning Wang, Clemens Burda, and James P. Basilion. "Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis." Cancers 13, no. 8 (2021): 1825. http://dx.doi.org/10.3390/cancers13081825.
Full textRoorda, Robert D., Tobias M. Hohl, Ricardo Toledo-Crow, and Gero Miesenböck. "Video-Rate Nonlinear Microscopy of Neuronal Membrane Dynamics With Genetically Encoded Probes." Journal of Neurophysiology 92, no. 1 (2004): 609–21. http://dx.doi.org/10.1152/jn.00087.2004.
Full textZhao, Xinyu, Shuqing He, and Mei Chee Tan. "Advancements in infrared imaging platforms: complementary imaging systems and contrast agents." Journal of Materials Chemistry B 5, no. 23 (2017): 4266–75. http://dx.doi.org/10.1039/c7tb00123a.
Full textDe Jesus, Elizabeth, Jane J. Keating, Sumith A. Kularatne, et al. "Comparison of Folate Receptor Targeted Optical Contrast Agents for Intraoperative Molecular Imaging." International Journal of Molecular Imaging 2015 (September 28, 2015): 1–10. http://dx.doi.org/10.1155/2015/469047.
Full textOhnishi, Shunsuke, Stephen J. Lomnes, Rita G. Laurence, Andrew Gogbashian, Giuliano Mariani, and John V. Frangioni. "Organic Alternatives to Quantum Dots for Intraoperative Near-Infrared Fluorescent Sentinel Lymph Node Mapping." Molecular Imaging 4, no. 3 (2005): 153535002005051. http://dx.doi.org/10.1162/15353500200505127.
Full textKobayashi, H., M. Ogawa, N. Kosaka, et al. "CMR2009: 2.01: Designing cancer cell-specific fluorescence contrast agents: a flexible approach." Contrast Media & Molecular Imaging 4, no. 6 (2009): 263–64. http://dx.doi.org/10.1002/cmmi.304.
Full textCarr, Jessica A., Daniel Franke, Justin R. Caram, et al. "Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green." Proceedings of the National Academy of Sciences 115, no. 17 (2018): 4465–70. http://dx.doi.org/10.1073/pnas.1718917115.
Full textLi, Yuyang, Kian Shaker, Jakob C. Larsson, Carmen Vogt, Hans M. Hertz, and Muhammet S. Toprak. "A Library of Potential Nanoparticle Contrast Agents for X-Ray Fluorescence Tomography Bioimaging." Contrast Media & Molecular Imaging 2018 (December 27, 2018): 1–7. http://dx.doi.org/10.1155/2018/8174820.
Full textCarlson, Alicia L., Ann M. Gillenwater, Michelle D. Williams, Adel K. El-Naggar, and R. R. Richards-Kortum. "Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia." Technology in Cancer Research & Treatment 6, no. 5 (2007): 361–74. http://dx.doi.org/10.1177/153303460700600501.
Full textSun, Jiantang, Kun Fu, Ming-Qiang Zhu, Lissett Bickford, Eric Post, and Rebekah Drezek. "Near-Infrared Quantum Dot Contrast Agents for Fluorescence Tissue Imaging: A Phantom Study." Current Nanoscience 5, no. 2 (2009): 160–66. http://dx.doi.org/10.2174/157341309788185433.
Full textDemos, S. G., W. B. Wang, and R. R. Alfano. "Imaging objects hidden in scattering media with fluorescence polarization preservation of contrast agents." Applied Optics 37, no. 4 (1998): 792. http://dx.doi.org/10.1364/ao.37.000792.
Full textKotková, Zuzana, Jan Kotek, Daniel Jirák, et al. "Cyclodextrin-Based Bimodal Fluorescence/MRI Contrast Agents: An Efficient Approach to Cellular Imaging." Chemistry - A European Journal 16, no. 33 (2010): 10094–102. http://dx.doi.org/10.1002/chem.200903519.
Full textEndres, Paul J., Keith W. MacRenaris, Stefan Vogt, Matthew J. Allen, and Thomas J. Meade. "Quantitative Imaging of Cell-Permeable Magnetic Resonance Contrast Agents Using X-Ray Fluorescence." Molecular Imaging 5, no. 4 (2006): 7290.2006.00026. http://dx.doi.org/10.2310/7290.2006.00026.
Full textPayne, William M., Tanner K. Hill, Denis Svechkarev, Megan B. Holmes, Balasrinivasa R. Sajja, and Aaron M. Mohs. "Multimodal Imaging Nanoparticles Derived from Hyaluronic Acid for Integrated Preoperative and Intraoperative Cancer Imaging." Contrast Media & Molecular Imaging 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/9616791.
Full textBaranowska-Korczyc, Anna, Małgorzata Jasiurkowska-Delaporte, Barbara M. Maciejewska, et al. "PEG–MWCNT/Fe hybrids as multi-modal contrast agents for MRI and optical imaging." RSC Advances 6, no. 55 (2016): 49891–902. http://dx.doi.org/10.1039/c6ra09191a.
Full textLuo, Ningqi, Chuan Yang, Xiumei Tian, et al. "A general top-down approach to synthesize rare earth doped-Gd2O3 nanocrystals as dualmodal contrast agents." J. Mater. Chem. B 2, no. 35 (2014): 5891–97. http://dx.doi.org/10.1039/c4tb00695j.
Full textTan, Yiyong, Zehong Cao, Hari Krishna Sajja, et al. "DOT corrected fluorescence molecular tomography using targeted contrast agents for small animal tumor imaging." Journal of X-Ray Science and Technology 21, no. 1 (2013): 43–52. http://dx.doi.org/10.3233/xst-130365.
Full textYu, Ming-Xia, Jiao-Jiao Ma, Jia-Mei Wang, et al. "Ag2Te Quantum Dots as Contrast Agents for Near-Infrared Fluorescence and Computed Tomography Imaging." ACS Applied Nano Materials 3, no. 6 (2020): 6071–77. http://dx.doi.org/10.1021/acsanm.0c01274.
Full textBingbing Cheng, Ming-Yuan Wei, Yuan Liu, et al. "Development of Ultrasound-Switchable Fluorescence Imaging Contrast Agents Based on Thermosensitive Polymers and Nanoparticles." IEEE Journal of Selected Topics in Quantum Electronics 20, no. 3 (2014): 67–80. http://dx.doi.org/10.1109/jstqe.2013.2280997.
Full textFortin, Pierre-Yves, Coralie Genevois, Anne Koenig, Emilie Heinrich, Isabelle Texier, and Franck Couillaud. "Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents." Journal of Biomedical Optics 17, no. 12 (2012): 126004. http://dx.doi.org/10.1117/1.jbo.17.12.126004.
Full textHockenberry, Mark S., Zachary L. Smith, and Phillip Mucksavage. "A Novel Use of Near-Infrared Fluorescence Imaging During Robotic Surgery Without Contrast Agents." Journal of Endourology 28, no. 5 (2014): 509–12. http://dx.doi.org/10.1089/end.2013.0606.
Full textZhang, Chris J., Michael S. Valic, Juan Chen, and Gang Zheng. "In Vivo Potential of Manganese Chelated Porphysomes as MRI Contrast Agents." STEM Fellowship Journal 3, no. 1 (2017): 47–53. http://dx.doi.org/10.17975/sfj-2017-007.
Full textYu, Zhi, Michael Grafe, Heike Meyborg, Eckart Fleck, and Yangqiu Li. "In Vitro Characterization of Magnetic Resonance Imaging Contrast Agents for Molecular Imaging." Blood 108, no. 11 (2006): 3944. http://dx.doi.org/10.1182/blood.v108.11.3944.3944.
Full textZhu, Qin, Fei Pan, Yu Tian, Weijun Tang, Yuan Yuan, and Aiguo Hu. "Facile synthesis of Gd(iii) metallosurfactant-functionalized carbon nanodots with high relaxivity as bimodal imaging probes." RSC Advances 6, no. 35 (2016): 29441–47. http://dx.doi.org/10.1039/c6ra02654k.
Full textLesniak, Wojciech G., Yixuan Wu, Jeeun Kang, et al. "Dual contrast agents for fluorescence and photoacoustic imaging: evaluation in a murine model of prostate cancer." Nanoscale 13, no. 20 (2021): 9217–28. http://dx.doi.org/10.1039/d1nr00669j.
Full textKeahey, Pelham, Preetha Ramalingam, Kathleen Schmeler, and Rebecca R. Richards-Kortum. "Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents." Proceedings of the National Academy of Sciences 113, no. 39 (2016): 10769–73. http://dx.doi.org/10.1073/pnas.1613497113.
Full textFixler, Dror, Chen Tzur, and Zeev Zalevsky. "Genetic Algorithm-Based Design for Metal-Enhanced Fluorescent Nanostructures." Materials 12, no. 11 (2019): 1766. http://dx.doi.org/10.3390/ma12111766.
Full textMa, Jiao-Jiao, Ming-Xia Yu, Zheng Zhang, et al. "Gd-DTPA-coupled Ag2Se quantum dots for dual-modality magnetic resonance imaging and fluorescence imaging in the second near-infrared window." Nanoscale 10, no. 22 (2018): 10699–704. http://dx.doi.org/10.1039/c8nr02017e.
Full textXu, Hao, Yubin Liu, Junle Qu, and Zhen Yuan. "PEGylated liposomal photosensitizers as theranostic agents for dual-modal photoacoustic and fluorescence imaging-guided photodynamic therapy." Journal of Innovative Optical Health Sciences 12, no. 03 (2019): 1941003. http://dx.doi.org/10.1142/s1793545819410037.
Full textGuo, Jinzhu, Hua Yue, Yanjun Wang, and Xiujuan Du. "Evaluation Preparation of Apatinib-Loaded Polymer Nanoparticles and Its Effect in the Treatment of Advanced Ovarian Cancer." Journal of Nanoscience and Nanotechnology 21, no. 2 (2021): 1212–19. http://dx.doi.org/10.1166/jnn.2021.18669.
Full textAkers, Walter J., Mikhail Y. Berezin, Hyeran Lee, and Samuel Achilefu. "Predicting in vivo fluorescence lifetime behavior of near-infrared fluorescent contrast agents using in vitro measurements." Journal of Biomedical Optics 13, no. 5 (2008): 054042. http://dx.doi.org/10.1117/1.2982535.
Full textJiang, Yuyan, and Kanyi Pu. "Molecular Fluorescence and Photoacoustic Imaging in the Second Near‐Infrared Optical Window Using Organic Contrast Agents." Advanced Biosystems 2, no. 5 (2018): 1700262. http://dx.doi.org/10.1002/adbi.201700262.
Full textZhang, Qimei, Anna M. Grabowska, Philip A. Clarke, and Stephen P. Morgan. "Numerical Simulation of a Scanning Illumination System for Deep Tissue Fluorescence Imaging." Journal of Imaging 5, no. 11 (2019): 83. http://dx.doi.org/10.3390/jimaging5110083.
Full textZhang, Mingming, Shuya Li, Xuzhou Yan, et al. "Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging." Proceedings of the National Academy of Sciences 113, no. 40 (2016): 11100–11105. http://dx.doi.org/10.1073/pnas.1612898113.
Full textTansi, Felista L., Ronny Rüger, Ansgar M. Kollmeier, et al. "Targeting the Tumor Microenvironment with Fluorescence-Activatable Bispecific Endoglin/Fibroblast Activation Protein Targeting Liposomes." Pharmaceutics 12, no. 4 (2020): 370. http://dx.doi.org/10.3390/pharmaceutics12040370.
Full textLinsler, S., S. Senger, S. Müller, A. Müller, and J. Oertel. "OS06.5A Fluorescence image-guided resection of intracranial meningioma: an experimental in vivo study on nude mice." Neuro-Oncology 23, Supplement_2 (2021): ii9—ii10. http://dx.doi.org/10.1093/neuonc/noab180.029.
Full textFei-Peng, Zhu, Chen Guo-Tao, Wang Shou-Ju, et al. "Dual-Modality Imaging Probes with High Magnetic Relaxivity and Near-Infrared Fluorescence Based Highly Aminated Mesoporous Silica Nanoparticles." Journal of Nanomaterials 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/6502127.
Full text