Academic literature on the topic 'Fluorescence spectroscopy. Nanotechnology. Membranes (Biology)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluorescence spectroscopy. Nanotechnology. Membranes (Biology).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fluorescence spectroscopy. Nanotechnology. Membranes (Biology)"

1

Xu, Zhi, Wen-Min Su, and George M. Carman. "Fluorescence spectroscopy measures yeastPAH1-encoded phosphatidate phosphatase interaction with liposome membranes." Journal of Lipid Research 53, no. 3 (2011): 522–28. http://dx.doi.org/10.1194/jlr.m022798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kahya, Nicoletta, Dag Scherfeld, Kirsten Bacia, Bert Poolman, and Petra Schwille. "Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy." Journal of Biological Chemistry 278, no. 30 (2003): 28109–15. http://dx.doi.org/10.1074/jbc.m302969200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Palmer, Arthur G., and Nancy L. Thompson. "Fluorescence correlation spectroscopy for detecting submicroscopic clusters of fluorescent molecules in membranes." Chemistry and Physics of Lipids 50, no. 3-4 (1989): 253–70. http://dx.doi.org/10.1016/0009-3084(89)90053-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thompson, Nancy L., Xiang Wang, and Punya Navaratnarajah. "Total internal reflection with fluorescence correlation spectroscopy: Applications to substrate-supported planar membranes." Journal of Structural Biology 168, no. 1 (2009): 95–106. http://dx.doi.org/10.1016/j.jsb.2009.02.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schwille, Petra, Jonas Korlach, and Watt W. Webb. "Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes." Cytometry 36, no. 3 (1999): 176–82. http://dx.doi.org/10.1002/(sici)1097-0320(19990701)36:3<176::aid-cyto5>3.0.co;2-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sinner, Eva-Kathrin, Ute Reuning, Fatma Nese Kök, et al. "Incorporation of integrins into artificial planar lipid membranes: characterization by plasmon-enhanced fluorescence spectroscopy." Analytical Biochemistry 333, no. 2 (2004): 216–24. http://dx.doi.org/10.1016/j.ab.2004.05.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pramanik, Aladdin, Per Thyberg, and Rudolf Rigler. "Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy." Chemistry and Physics of Lipids 104, no. 1 (2000): 35–47. http://dx.doi.org/10.1016/s0009-3084(99)00113-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cabré, Elisa J., Luís M. S. Lourab, Bárbara Olmeda, Alexander Fedorov, Jesus Pérez-Gil, and Manuel Prieto. "Structural characterization of pulmonary surfactant protein SP-B in model membranes by fluorescence spectroscopy." Chemistry and Physics of Lipids 149 (September 2007): S12—S13. http://dx.doi.org/10.1016/j.chemphyslip.2007.06.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bag, Nirmalya, David A. Holowka, and Barbara A. Baird. "Imaging FCS delineates subtle heterogeneity in plasma membranes of resting mast cells." Molecular Biology of the Cell 31, no. 7 (2020): 709–23. http://dx.doi.org/10.1091/mbc.e19-10-0559.

Full text
Abstract:
The plasma membrane’s resting organization must be poised to respond efficiently to external stimuli. Analysis of very large data sets from imaging fluorescence correlation spectroscopy parameterizes diffusion properties from structurally distinct probes to provide a composite picture of subtle interactions underlying poised membrane heterogeneity.
APA, Harvard, Vancouver, ISO, and other styles
10

Korlach, Jonas, Tobias Baumgart, Watt W. Webb, and Gerald W. Feigenson. "Detection of motional heterogeneities in lipid bilayer membranes by dual probe fluorescence correlation spectroscopy." Biochimica et Biophysica Acta (BBA) - Biomembranes 1668, no. 2 (2005): 158–63. http://dx.doi.org/10.1016/j.bbamem.2004.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fluorescence spectroscopy. Nanotechnology. Membranes (Biology)"

1

Gould, Travis John. "Nanoscale Imaging and Spectroscopy of Membrane Organization." Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/GouldTJ2009.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rowe, Brad A. "Characterization of bicelle model membranes using multidimensional spectroscopy of fluorescent probes." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 309 p, 2005. http://proquest.umi.com/pqdweb?did=954032061&sid=11&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turker, Gorgulu Sevgi. "Molecular Investigation Of Ptz-induced Epileptic Activities In Rat Brain Cell Membranes And The Effects Of Vigabatrin." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611100/index.pdf.

Full text
Abstract:
The epilepsies are a heterogenous group of symptom complexes, whose common features is the recurrence of seizures. There is no certain therapy for epilepsy. In order to promote new advances for the prevention of epilepsy the molecular mechanism of epileptic activities should be clarified. In the present study the goal is to obtain information for molecular mechanism of epilepsy. To achieve this, molecular alterations from pentylenetetrazol (PTZ)-induced epileptic activities on rat brain tissue and cell membranes were investigated by Fourier Transform Infrared (FTIR) spectroscopy, Fourier Tran
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Haifei. "Chemical biology approaches to study toxin clustering and lipids reorganization in Shiga toxin endocytosis." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB147.

Full text
Abstract:
La toxine bactérienne de Shiga se lie au glycosphingolipide (GSL) globotriaosylcéramide (Gb3) afin d’entrer par endocytose dans les cellules en utilisant une voie dépendante et indépendante de la clathrine. Dans la voie indépendante de la clathrine, la toxine de Shiga réorganise les lipides de la membrane de façon à imposer une contrainte mécanique sur la bicouche, conduisant ainsi à la formation de pic d’invagination d'endocytose profonds et étroits. Mécaniquement ce phénomène n’est pas encore compris, notamment il reste énigmatique, comment se traduisent les propriétés géométriques de l’agré
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fluorescence spectroscopy. Nanotechnology. Membranes (Biology)"

1

Nicolau, Dan V., and Alexander N. Cartwright. Nanoscale imaging, sensing, and actuation for biomedical applications VIII: 24 and 26-27, January 2011, San Francisco, California, United States. SPIE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cartwright, Alexander N. Nanoscale imaging, sensing, and actuation for biomedical applications VI: 27-28 January 2009, San Jose, California, United States. Edited by SPIE (Society). SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hof, Martin, Rudolf Hutterer, and V. Fidler. Fluorescence Spectroscopy in Biology: Advanced Methods and their Applications to Membranes, Proteins, DNA, and Cells. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

M, Hof, Hutterer R, and Fidler V, eds. Fluorescence spectroscopy in biology: Advanced methods and their applications to membranes, proteins, DNA, and cells. Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

(Editor), Martin Hof, Rudolf Hutterer (Editor), and Vlastimil Fidler (Editor), eds. Fluorescence Spectroscopy in Biology: Advanced Methods and their Applications to Membranes, Proteins, DNA, and Cells (Springer Series on Fluorescence). Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

N, Cartwright Alexander, Nicolau Dan V, and Society of Photo-optical Instrumentation Engineers., eds. Nanoscale imaging, spectroscopy, sensing, and actuation for biomedical applications IV: 23-24 January 2007, San Jose, California, USA. SPIE, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cartwright, Alexander, and Dan Nicolau. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications V: 21-23 January 2008, San Jose, California, USA. SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nanobiophotonics and Biomedical Applications III: Vol. 6095 (Proceedings of SPIE). Society of Photo Optical, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nanobiophotonics and biomedical applications III: 23-24 January 2006, San Jose, California, USA. SPIE, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

N, Cartwright Alexander, Nicolau Dan V, and Society of Photo-optical Instrumentation Engineers., eds. Nanobiophotonics and biomedical applications III: 23-24 January 2006, San Jose, California, USA. SPIE, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fluorescence spectroscopy. Nanotechnology. Membranes (Biology)"

1

Acosta, Diana, Tapojyoti Das, and David Eliezer. "Probing IDP Interactions with Membranes by Fluorescence Spectroscopy." In Methods in Molecular Biology. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0524-0_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Betaneli, Viktoria, and Petra Schwille. "Fluorescence Correlation Spectroscopy to Examine Protein–Lipid Interactions in Membranes." In Methods in Molecular Biology. Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-275-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Betaneli, Viktoria, Jonas Mücksch, and Petra Schwille. "Fluorescence Correlation Spectroscopy to Examine Protein–Lipid Interactions in Membranes." In Methods in Molecular Biology. Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9512-7_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sousa, Carla, Filipa C. Santos, Andreia Bento-Oliveira, Beatriz Mestre, Liana C. Silva, and Rodrigo F. M. de Almeida. "Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy." In Methods in Molecular Biology. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0814-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gerlach, Lisa, Omkolsum Gholami, Nicole Schürmann, and Jörg H. Kleinschmidt. "Folding of β-Barrel Membrane Proteins into Lipid Membranes by Site-Directed Fluorescence Spectroscopy." In Methods in Molecular Biology. Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9512-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Steinberger, Tomáš, Radek Macháň, and Martin Hof. "Z-Scan Fluorescence Correlation Spectroscopy as a Tool for Diffusion Measurements in Planar Lipid Membranes." In Methods in Molecular Biology. Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-649-8_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fuhrer, Andrew, and Amir M. Farnoud. "Characterization of Lipid Order and Domain Formation in Model Membranes Using Fluorescence Microscopy and Spectroscopy." In Methods in Molecular Biology. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0814-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fluorescence spectroscopy. Nanotechnology. Membranes (Biology)"

1

Chang, Hsueh-Chia. "Electrokinetics of Nanochannels: The Next Nanotechnology for Ion/Molecule/Nanocolloid Sensing, Concentration and Filtration." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82128.

Full text
Abstract:
Because nanochannels act as lenses that can focus electric fields on a chip, they can concentrate and filter ions, molecules and nanocolloids by ion selectivity, electrodeless dielectrophoresis and surface hybridization. However, before fabricated nanochannels can lead to the next-generation of chip-scale dialysis membranes, preconcentrators for mass spectrometers, ion sieves, molecular sensors, solar/fuel cell membranes etc, the anomalous dc I-V characteristics and ac impedance of such nanochannels must be understood. Curious phenomena such as limiting and over-limiting currents, rectificatio
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!