To see the other types of publications on this topic, follow the link: Fluorotelomer.

Journal articles on the topic 'Fluorotelomer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fluorotelomer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Barzen-Hanson, Krista A., Shannon E. Davis, Markus Kleber, and Jennifer A. Field. "Sorption of Fluorotelomer Sulfonates, Fluorotelomer Sulfonamido Betaines, and a Fluorotelomer Sulfonamido Amine in National Foam Aqueous Film-Forming Foam to Soil." Environmental Science & Technology 51, no. 21 (October 16, 2017): 12394–404. http://dx.doi.org/10.1021/acs.est.7b03452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ellis, D. A., J. W. Martin, S. A. Mabury, M. D. Hurley, M. P. Sulbaek Andersen, and T. J. Wallington. "Atmospheric Lifetime of Fluorotelomer Alcohols." Environmental Science & Technology 37, no. 17 (September 2003): 3816–20. http://dx.doi.org/10.1021/es034136j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dasu, Kavitha, Laurel A. Royer, Jinxia Liu, and Linda S. Lee. "Hydrolysis of fluorotelomer compounds leading to fluorotelomer alcohol production during solvent extractions of soils." Chemosphere 81, no. 7 (November 2010): 911–17. http://dx.doi.org/10.1016/j.chemosphere.2010.07.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tucker, William B., and Sandro Mecozzi. "Base-induced instability of fluorotelomer alcohols." Journal of Fluorine Chemistry 156 (December 2013): 26–29. http://dx.doi.org/10.1016/j.jfluchem.2013.08.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dasu, Kavitha, Linda S. Lee, Ronald F. Turco, and Loring F. Nies. "Aerobic biodegradation of 8:2 fluorotelomer stearate monoester and 8:2 fluorotelomer citrate triester in forest soil." Chemosphere 91, no. 3 (April 2013): 399–405. http://dx.doi.org/10.1016/j.chemosphere.2012.11.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Taniyasu, Sachi, Kurunthachalam Kannan, Man Ka So, Anna Gulkowska, Ewan Sinclair, Tsuyoshi Okazawa, and Nobuyoshi Yamashita. "Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota." Journal of Chromatography A 1093, no. 1-2 (November 2005): 89–97. http://dx.doi.org/10.1016/j.chroma.2005.07.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bach, Cristina, Virginie Boiteux, Jessica Hemard, Adeline Colin, Christophe Rosin, Jean-François Munoz, and Xavier Dauchy. "Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry." Journal of Chromatography A 1448 (May 2016): 98–106. http://dx.doi.org/10.1016/j.chroma.2016.04.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gauthier, Suzanne A., and Scott A. Mabury. "AQUEOUS PHOTOLYSIS OF 8:2 FLUOROTELOMER ALCOHOL." Environmental Toxicology and Chemistry 24, no. 8 (2005): 1837. http://dx.doi.org/10.1897/04-591r.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Field, Jennifer A., and Jimmy Seow. "Properties, occurrence, and fate of fluorotelomer sulfonates." Critical Reviews in Environmental Science and Technology 47, no. 8 (April 18, 2017): 643–91. http://dx.doi.org/10.1080/10643389.2017.1326276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, N., J. Liu, R. C. Buck, Patrick W. Folsom, L. M. Sulecki, Barry Wolstenholme, P. K. Panciroli, and C. A. Bellin. "P37—Aerobic soil biotransformation of fluorotelomer alcohols." Reproductive Toxicology 33, no. 4 (July 2012): 611. http://dx.doi.org/10.1016/j.reprotox.2011.11.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Serex, Tessa, Satheesh Anand, Susan Munley, E. Maria Donner, Steven R. Frame, Robert C. Buck, and Scott E. Loveless. "Toxicological evaluation of 6:2 fluorotelomer alcohol." Toxicology 319 (May 2014): 1–9. http://dx.doi.org/10.1016/j.tox.2014.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Merino, Nancy, Meng Wang, Rocio Ambrocio, Kimberly Mak, Ellen O'Connor, An Gao, Elisabeth L. Hawley, Rula A. Deeb, Linda Y. Tseng, and Shaily Mahendra. "Fungal biotransformation of 6:2 fluorotelomer alcohol." Remediation Journal 28, no. 2 (March 2018): 59–70. http://dx.doi.org/10.1002/rem.21550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Thackray, Colin P., and Noelle E. Selin. "Uncertainty and variability in atmospheric formation of PFCAs from fluorotelomer precursors." Atmospheric Chemistry and Physics 17, no. 7 (April 6, 2017): 4585–97. http://dx.doi.org/10.5194/acp-17-4585-2017.

Full text
Abstract:
Abstract. Perfluoroalkyl carboxylic acids (PFCAs) are environmental contaminants that are highly persistent, bio-accumulative, and have been detected along with their atmospheric precursors far from emissions sources. The importance of precursor emissions as an indirect source of PFCAs to the environment is uncertain. Modeling studies have used degradation mechanisms of differing complexities to estimate the atmospheric production of PFCAs, and these differing mechanisms lead to quantitatively different yields of PFCAs under differing atmospheric conditions. We evaluate PFCA formation with the most complete degradation mechanism to date, to our knowledge, using a box model analysis to simulate the atmospheric chemical fate of fluorotelomer precursors to long-chain PFCAs. In particular, we examine the variability in PFCA formation in different chemical environments, and estimate the uncertainty in PFCA formation due to reaction rate constants. We calculate long-chain PFCA formation theoretical maximum yields for the degradation of fluorotelomer precursor species at a representative sample of atmospheric conditions from a three-dimensional chemical transport model, and estimate uncertainties in such calculations for urban, ocean, and Arctic conditions using polynomial chaos methods. We find that atmospheric conditions farther from pollution sources have both higher capacities to form long-chain PFCAs and higher uncertainties in those capacities. Our calculations of theoretical maximum yields indicate that under typical Northern Hemisphere conditions, less than 10 % of emitted precursor may reach long-chain PFCA end products. This results in a possible upper bound of 2–50 t year−1 of long-chain PFCA (depending on quantity of emitted precursor) produced in the atmosphere via degradation of fluorotelomer products. However, transport to high-yield areas could result in higher yields. While the atmosphere is a potentially growing source of long-chain PFCAs in the Arctic, oceanic transport and interactions between the atmosphere and ocean may be relatively more important pathways to the Arctic for long-chain PFCAs.
APA, Harvard, Vancouver, ISO, and other styles
14

Ruan, Ting, Lisa M. Sulecki, Barry W. Wolstenholme, Guibin Jiang, Ning Wang, and Robert C. Buck. "6:2 Fluorotelomer iodide in vitro metabolism by rat liver microsomes: Comparison with [1,2-14C] 6:2 fluorotelomer alcohol." Chemosphere 112 (October 2014): 34–41. http://dx.doi.org/10.1016/j.chemosphere.2014.02.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Phillips, Michelle M. (MacDonald), Mary Joyce A. Dinglasan-Panlilio, Scott A. Mabury, Keith R. Solomon, and Paul K. Sibley. "Fluorotelomer Acids are More Toxic than Perfluorinated Acids." Environmental Science & Technology 41, no. 20 (October 2007): 7159–63. http://dx.doi.org/10.1021/es070734c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dinglasan, Mary Joyce A., Yun Ye, Elizabeth A. Edwards, and Scott A. Mabury. "Fluorotelomer Alcohol Biodegradation Yields Poly- and Perfluorinated Acids." Environmental Science & Technology 38, no. 10 (May 2004): 2857–64. http://dx.doi.org/10.1021/es0350177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Goss, Kai-Uwe, Guido Bronner, Tom Harner, Monika Hertel, and Torsten C. Schmidt. "The Partition Behavior of Fluorotelomer Alcohols and Olefins." Environmental Science & Technology 40, no. 11 (June 2006): 3572–77. http://dx.doi.org/10.1021/es060004p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ruan, Ting, Bogdan Szostek, Patrick W. Folsom, Barry W. Wolstenholme, Runzeng Liu, Jiyan Liu, Guibin Jiang, Ning Wang, and Robert C. Buck. "Aerobic Soil Biotransformation of 6:2 Fluorotelomer Iodide." Environmental Science & Technology 47, no. 20 (October 2, 2013): 11504–11. http://dx.doi.org/10.1021/es4018128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nilsson, Helena, Anna Kärrman, Anna Rotander, Bert van Bavel, Gunilla Lindström, and Håkan Westberg. "Biotransformation of fluorotelomer compound to perfluorocarboxylates in humans." Environment International 51 (January 2013): 8–12. http://dx.doi.org/10.1016/j.envint.2012.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Martin, Jonathan W., Katie Chan, Scott A. Mabury, and Peter J. O’Brien. "Bioactivation of fluorotelomer alcohols in isolated rat hepatocytes." Chemico-Biological Interactions 177, no. 3 (February 2009): 196–203. http://dx.doi.org/10.1016/j.cbi.2008.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yi, Shan, Katie C. Harding-Marjanovic, Erika F. Houtz, Ying Gao, Jennifer E. Lawrence, Rita V. Nichiporuk, Anthony T. Iavarone, et al. "Biotransformation of AFFF Component 6:2 Fluorotelomer Thioether Amido Sulfonate Generates 6:2 Fluorotelomer Thioether Carboxylate under Sulfate-Reducing Conditions." Environmental Science & Technology Letters 5, no. 5 (April 4, 2018): 283–88. http://dx.doi.org/10.1021/acs.estlett.8b00148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kabadi, Shruti V., Jeffrey W. Fisher, Daniel R. Doerge, Darshan Mehta, Jason Aungst, and Penelope Rice. "Characterizing biopersistence potential of the metabolite 5:3 fluorotelomer carboxylic acid after repeated oral exposure to the 6:2 fluorotelomer alcohol." Toxicology and Applied Pharmacology 388 (February 2020): 114878. http://dx.doi.org/10.1016/j.taap.2020.114878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dasu, Kavitha, and Linda S. Lee. "Aerobic biodegradation of toluene-2,4-di(8:2 fluorotelomer urethane) and hexamethylene-1,6-di(8:2 fluorotelomer urethane) monomers in soils." Chemosphere 144 (February 2016): 2482–88. http://dx.doi.org/10.1016/j.chemosphere.2015.11.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Washington, John W., J. Jackson Ellington, Thomas M. Jenkins, John J. Evans, Hoon Yoo, and Sarah C. Hafner. "Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil." Environmental Science & Technology 43, no. 17 (September 2009): 6617–23. http://dx.doi.org/10.1021/es9002668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wang, Ning, Bogdan Szostek, Robert C. Buck, Patrick W. Folsom, Lisa M. Sulecki, Vladimir Capka, William R. Berti, and John T. Gannon. "Fluorotelomer Alcohol BiodegradationDirect Evidence that Perfluorinated Carbon Chains Breakdown." Environmental Science & Technology 39, no. 19 (October 2005): 7516–28. http://dx.doi.org/10.1021/es0506760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hamid, Hanna, Loretta Y. Li, and John R. Grace. "Aerobic biotransformation of fluorotelomer compounds in landfill leachate-sediment." Science of The Total Environment 713 (April 2020): 136547. http://dx.doi.org/10.1016/j.scitotenv.2020.136547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dasu, Kavitha, Jinxia Liu, and Linda S. Lee. "Aerobic Soil Biodegradation of 8:2 Fluorotelomer Stearate Monoester." Environmental Science & Technology 46, no. 7 (March 16, 2012): 3831–36. http://dx.doi.org/10.1021/es203978g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Butt, Craig M., Derek C. G. Muir, and Scott A. Mabury. "Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: A review." Environmental Toxicology and Chemistry 33, no. 2 (December 20, 2013): 243–67. http://dx.doi.org/10.1002/etc.2407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Krusic, Paul J., Alexander A. Marchione, Fredric Davidson, Mary A. Kaiser, Chien-Ping C. Kao, Raymond E. Richardson, Miguel Botelho, Robert L. Waterland, and Robert C. Buck. "Vapor Pressure and Intramolecular Hydrogen Bonding in Fluorotelomer Alcohols." Journal of Physical Chemistry A 109, no. 28 (July 2005): 6232–41. http://dx.doi.org/10.1021/jp0502961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wu, Yan, Gillian Z. Miller, Jeff Gearhart, Graham Peaslee, and Marta Venier. "Side-chain fluorotelomer-based polymers in children car seats." Environmental Pollution 268 (January 2021): 115477. http://dx.doi.org/10.1016/j.envpol.2020.115477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yamada, Takahiro, Philip H. Taylor, Robert C. Buck, Mary A. Kaiser, and Robert J. Giraud. "Thermal degradation of fluorotelomer treated articles and related materials." Chemosphere 61, no. 7 (November 2005): 974–84. http://dx.doi.org/10.1016/j.chemosphere.2005.03.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Washington, John W., Jonathan E. Naile, Thomas M. Jenkins, and David G. Lynch. "Characterizing Fluorotelomer and Polyfluoroalkyl Substances in New and Aged Fluorotelomer-Based Polymers for Degradation Studies with GC/MS and LC/MS/MS." Environmental Science & Technology 48, no. 10 (May 2014): 5762–69. http://dx.doi.org/10.1021/es500373b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bottos, Eric M., Ebtihal Y. AL-shabib, Dayton M. J. Shaw, Breanne M. McAmmond, Aditi Sharma, Danae M. Suchan, Andrew D. S. Cameron, and Jonathan D. Van Hamme. "Transcriptomic response of Gordonia sp. strain NB4-1Y when provided with 6:2 fluorotelomer sulfonamidoalkyl betaine or 6:2 fluorotelomer sulfonate as sole sulfur source." Biodegradation 31, no. 4-6 (November 5, 2020): 407–22. http://dx.doi.org/10.1007/s10532-020-09917-8.

Full text
Abstract:
Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern. We previously described biodegradation of two PFAS that represent components and transformation products of aqueous film-forming foams (AFFF), 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA), by Gordonia sp. strain NB4-1Y. To identify genes involved in the breakdown of these compounds, the transcriptomic response of NB4-1Y was examined when grown on 6:2 FTAB, 6:2 FTSA, a non-fluorinated analog of 6:2 FTSA (1-octanesulfonate), or MgSO4, as sole sulfur source. Differentially expressed genes were identified as those with ± 1.5 log2-fold-differences (± 1.5 log2FD) in transcript abundances in pairwise comparisons. Transcriptomes of cells grown on 6:2 FTAB and 6:2 FTSA were most similar (7.9% of genes expressed ± 1.5 log2FD); however, several genes that were expressed in greater abundance in 6:2 FTAB treated cells compared to 6:2 FTSA treated cells were noted for their potential role in carbon–nitrogen bond cleavage in 6:2 FTAB. Responses to sulfur limitation were observed in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments, as 20 genes relating to global sulfate stress response were more highly expressed under these conditions compared to the MgSO4 treatment. More highly expressed oxygenase genes in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments were found to code for proteins with lower percent sulfur-containing amino acids compared to both the total proteome and to oxygenases showing decreased expression. This work identifies genetic targets for further characterization and will inform studies aimed at evaluating the biodegradation potential of environmental samples through applied genomics. Graphic Abstract
APA, Harvard, Vancouver, ISO, and other styles
34

Nilsson, Helena, Anna Kärrman, Anna Rotander, Bert van Bavel, Gunilla Lindström, and Håkan Westberg. "Inhalation Exposure to Fluorotelomer Alcohols Yield Perfluorocarboxylates in Human Blood?" Environmental Science & Technology 44, no. 19 (October 2010): 7717–22. http://dx.doi.org/10.1021/es101951t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kutsuna, Shuzo, Yumiko Nagaoka, Koji Takeuchi, and Hisao Hori. "TiO2-Induced Heterogeneous Photodegradation of a Fluorotelomer Alcohol in Air." Environmental Science & Technology 40, no. 21 (November 2006): 6824–29. http://dx.doi.org/10.1021/es060852k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kim, Myung Hee, Ning Wang, Thomas McDonald, and Kung-Hui Chu. "Biodefluorination and biotransformation of fluorotelomer alcohols by two alkane-degradingPseudomonasstrains." Biotechnology and Bioengineering 109, no. 12 (June 4, 2012): 3041–48. http://dx.doi.org/10.1002/bit.24561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fiedler, Stefan, Gerd Pfister, and Karl-Werner Schramm. "Partitioning of fluorotelomer alcohols (FTOH) to semipermeable membrane devices (SPMD)." Environmental Science and Pollution Research 17, no. 2 (September 17, 2009): 420–28. http://dx.doi.org/10.1007/s11356-009-0237-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shaw, Dayton M. J., Gabriel Munoz, Eric M. Bottos, Sung Vo Duy, Sébastien Sauvé, Jinxia Liu, and Jonathan D. Van Hamme. "Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions." Science of The Total Environment 647 (January 2019): 690–98. http://dx.doi.org/10.1016/j.scitotenv.2018.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Larsen, Barbara S., Peter Stchur, Bogdan Szostek, Stanley F. Bachmura, Raymond C. Rowand, Keith B. Prickett, Stephen H. Korzeniowski, and Robert C. Buck. "Method development for the determination of residual fluorotelomer raw materials and perflurooctanoate in fluorotelomer-based products by gas chromatography and liquid chromatography mass spectrometry." Journal of Chromatography A 1110, no. 1-2 (March 2006): 117–24. http://dx.doi.org/10.1016/j.chroma.2006.01.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ayala-Cabrera, J. F., E. Moyano, and F. J. Santos. "Gas chromatography and liquid chromatography coupled to mass spectrometry for the determination of fluorotelomer olefins, fluorotelomer alcohols, perfluoroalkyl sulfonamides and sulfonamido-ethanols in water." Journal of Chromatography A 1609 (January 2020): 460463. http://dx.doi.org/10.1016/j.chroma.2019.460463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Schultz, Melissa M., Douglas F. Barofsky, and Jennifer A. Field. "Quantitative Determination of Fluorotelomer Sulfonates in Groundwater by LC MS/MS." Environmental Science & Technology 38, no. 6 (March 2004): 1828–35. http://dx.doi.org/10.1021/es035031j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Russell*, Mark H., Ning Wang, William R. Berti, Bogdan Szostek, and Robert C. Buck. "Comment on “Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil”." Environmental Science & Technology 44, no. 2 (January 15, 2010): 848. http://dx.doi.org/10.1021/es902348w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Yanyan, Jinxia Liu, Audrey Moores, and Subhasis Ghoshal. "Transformation of 6:2 Fluorotelomer Sulfonate by Cobalt(II)-Activated Peroxymonosulfate." Environmental Science & Technology 54, no. 7 (February 17, 2020): 4631–40. http://dx.doi.org/10.1021/acs.est.9b07113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Rankin, Keegan, and Scott A. Mabury. "Matrix Normalized MALDI-TOF Quantification of a Fluorotelomer-Based Acrylate Polymer." Environmental Science & Technology 49, no. 10 (April 29, 2015): 6093–101. http://dx.doi.org/10.1021/es505931v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Thuens, Sabine, Annekatrin Dreyer, Renate Sturm, Christian Temme, and Ralf Ebinghaus. "Determination of the Octanol−Air Partition Coefficients (KOA) of Fluorotelomer Alcohols." Journal of Chemical & Engineering Data 53, no. 1 (January 2008): 223–27. http://dx.doi.org/10.1021/je700522f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Frömel, Tobias, and Thomas P. Knepper. "Fluorotelomer ethoxylates: Sources of highly fluorinated environmental contaminants part I: Biotransformation." Chemosphere 80, no. 11 (September 2010): 1387–92. http://dx.doi.org/10.1016/j.chemosphere.2010.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ellington, J. Jackson, John W. Washington, John J. Evans, Thomas M. Jenkins, Sarah C. Hafner, and Michael P. Neill. "Analysis of fluorotelomer alcohols in soils: Optimization of extraction and chromatography." Journal of Chromatography A 1216, no. 28 (July 2009): 5347–54. http://dx.doi.org/10.1016/j.chroma.2009.05.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhao, Lijie, Patrick W. Folsom, Barry W. Wolstenholme, Hongwen Sun, Ning Wang, and Robert C. Buck. "6:2 Fluorotelomer alcohol biotransformation in an aerobic river sediment system." Chemosphere 90, no. 2 (January 2013): 203–9. http://dx.doi.org/10.1016/j.chemosphere.2012.06.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Martin, Jonathan W., Scott A. Mabury, and Peter J. O’Brien. "Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes." Chemico-Biological Interactions 155, no. 3 (August 2005): 165–80. http://dx.doi.org/10.1016/j.cbi.2005.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Li, Jianguo Liu, Jianxin Hu, and Frank Wania. "Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohol and Perfluoroalkyl Carboxylates: A Combined Dynamic Substance Flow and Environmental Fate Modeling Analysis." Environmental Science & Technology 51, no. 8 (March 28, 2017): 4461–70. http://dx.doi.org/10.1021/acs.est.6b04021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography