Academic literature on the topic 'Fluorouracil – Toxicology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluorouracil – Toxicology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fluorouracil – Toxicology"
Gintjee, Thomas J., Robert Goodnough, Kai Li, Adina Badea, Kara L. Lynch, Eddie Garcia, and Daniel Repplinger. "Real-time comprehensive toxicology testing in the clinical management of accidental pediatric capecitabine ingestion." Journal of Oncology Pharmacy Practice 26, no. 7 (February 23, 2020): 1759–61. http://dx.doi.org/10.1177/1078155220906266.
Full textDeepa Suruli, Fathima Bushra Sheriff Mirza, Gloria Jemmi Christobel R, Amuthavalli Kottaiswamy, Shila Samuel, and Vijayaraghavan Radhakrishnan. "Naringin and 5-fluorouracil suppress inflammatory Cytokines in human skin cancer cell line." International Journal of Research in Pharmaceutical Sciences 12, no. 1 (January 13, 2021): 729–33. http://dx.doi.org/10.26452/ijrps.v12i1.4172.
Full textOhuchida, A., T. Hara, A. Furukawa, S. Sato, M. Katoh, N. Ishihara, and T. Shibuya. "Mutagenicity of 5-fluorouracil and its metabolites." Mutation Research/Environmental Mutagenesis and Related Subjects 253, no. 3 (December 1991): 269–70. http://dx.doi.org/10.1016/0165-1161(91)90201-i.
Full textTan, Biqin, Jing Wang, Mengting Zhao, Yan Hu, Jiajia Wang, Bo Yang, QiaoJun He, Xiao Chun Yang, and Qinjie Weng. "TCF7L2 activation is required for myelin regeneration in 5-FU-induced demyelinating mice." Toxicology Research 4, no. 6 (2015): 1597–603. http://dx.doi.org/10.1039/c5tx00110b.
Full textNaren, Gerile, Lu Wang, Xiaolei Zhang, Lijuan Cheng, Shuai Yang, Jiajie Yang, Jiaojiao Guo, and Buhe Nashun. "The reversible reproductive toxicity of 5-fluorouracil in mice." Reproductive Toxicology 101 (April 2021): 1–8. http://dx.doi.org/10.1016/j.reprotox.2021.02.002.
Full textPolyzos, A., N. Tsavaris, A. Giannopoulos, C. Bacoyiannis, V. Papadimas, N. Kalahanis, G. Karatzas, et al. "Biochemical modulation of fluorouracil: comparison of methotrexate, folinic acid, and fluorouracil versus folinic acid and fluorouracil in advanced colorectal cancer: a randomized trial." Cancer Chemotherapy and Pharmacology 38, no. 3 (June 1996): 292–97. http://dx.doi.org/10.1007/s002800050485.
Full textKopjar, Nevenka, Ivan Milas, Verica Garaj-Vrhovac, and Marija Gamulin. "Cytogenetic outcomes of adjuvant chemotherapy in non-target cells of breast cancer patients." Human & Experimental Toxicology 26, no. 5 (May 2007): 391–99. http://dx.doi.org/10.1177/0960327106076812.
Full textHirata, Kohji, and Toshiharu Horie. "Changes in Intestinal Absorption of 5-Fluorouracil-Treated Rats." Pharmacology & Toxicology 85, no. 3 (September 1999): 33–36. http://dx.doi.org/10.1111/j.1600-0773.1999.tb01060.x.
Full textWerbrouck, Bart F., Walter J. Pauwels, and Jan L. De Bleecker. "A case of 5-fluorouracil-induced peripheral neuropathy." Clinical Toxicology 46, no. 3 (January 2008): 264–66. http://dx.doi.org/10.1080/15563650701438763.
Full textTakano, Fumihide, Tomoaki Tanaka, Jiro Aoi, Nobuo Yahagi, and Shinji Fushiya. "Protective effect of (+)-catechin against 5-fluorouracil-induced myelosuppression in mice." Toxicology 201, no. 1-3 (September 2004): 133–42. http://dx.doi.org/10.1016/j.tox.2004.04.009.
Full textDissertations / Theses on the topic "Fluorouracil – Toxicology"
Cassim, Layla. "Melatonin and anticancer therapy interactions with 5-Fluorouracil." Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1003224.
Full textRanchou, Boris. "Myocardite toxique au 5-fluoro-uracile : à propos d'une observation." Bordeaux 2, 2000. http://www.theses.fr/2000BOR2M065.
Full textFanciullino, Raphaëlle. "Développement d'une forme vectorielle furtive de 5-FU [5-fluorouracile] biomodulé : applications en oncologie expérimentale." Aix-Marseille 2, 2007. http://www.theses.fr/2007AIX22960.
Full textXie, Bingning. "Long non-coding RNA-based mechanisms for the inhibition of cell growth and development by 5 - Fluorouracil." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1B046/document.
Full textRNAs are molecules with important functions in diverse cellular processes. mRNAs encode proteins, while a large number of RNAs called long noncoding RNAs (lncRNAs) are not translated into proteins. Both types of RNAs exist in various isoforms due to alternative splicing.Some of lncRNA play important roles in cell growth and differentiation. However, their functions in the cytotoxicity of the drug anticancer chemotherapy using 5-fluorouracil (5-FU) are still unknown. During my research I found that treatment with 5-FU causes accumulation of lncRNA. Acuumulated antisense lncRNA form double stranded RNA with the mRNAs , negatively correlated with the level of the protein encoded by the mRNA. This potential inhibition of translation of key cell cycle regulators and essential genes by forming dsRNA may possibly prevent the progression of the cell cycle. My results suggest that lncRNA are likely to play an important role in the cytotoxicity of 5-FU. Our promising testing should inspire in-depth studies of lncRNA in the cytotoxicity of 5-FU in yeast and humans to improve chemotherapy.Rrp6 is a 3'-5 'exoribonuclease, which plays an important role in the regulation and modification of rRNA, mRNA and lncRNA. I found that overexpression of RRP6, the homologue of the yeast EXOSC10 gene in mammals, can lead to increased resistance to treatment with 5-FU. I found that the lncRNA MUT1312 form dsRNA with RRP6 that are negatively correlated with the level of Rrp6 protein. Furthermore, overexpression of MUT1312 during mitosis and associated with a decrease of Rrp6. Thus, my study suggests that MUT1312 may involved in the regulation of Rrp6 during cell differentiation. I further explored the function of the double-stranded RNA in meiosis. My research about SWI4/MUT477 indicates the important function of meiosis induced long noncoding RNA as a form of double-stranded RNA potentially regulate translation. Another aspect of the function of lncRNA is to regulate the transcription of downstream mRNA. I found SUT200 could inhibit transcription of CDC6 during meiosis by read-through. A similar case is CLN2/MUT1465. I did an in silico screening to find transcription factors that activate MUTs during meiosis. I found that most MUTs are induced by Ndt80. MUT1465 is among them: it could be induced by Ndt80 which inhibit the expression of CLN2 after initiation of meiosis. I found that repression of certain MUTs by the Ume6 / Rpd3 complex in mitosis is regulated differently between JHY222 and SK1. MUT100 which does not have the Ume6 binding site URS1 element, and is therefore an indirect target is derepressed in JHY22 ume6 but not in SK1 ume6. For the study about regulation of meiosis isoform, we have found that the histone deacetylase complex Rpd3 / Sin3 / Ume6 prevents the induction of long isoform BOI1 in mitosis by direct binding Ume6 binding to its target URS1.Orc1 is important for DNA replication. I have demonstrated that mORC1 is a direct target of the Ndt80 activator and its binding motif (MSE) is required for induction of isoform mORC1 and meiotic gene SMA2 divergently transcribed. I found that a strain incapable of inducing mORC1 contains abnormally high levels of Orc1 during gametogenesis, which correlates with mORC1 declining Orc1 protein. Since eukaryotic genes often encode multiple transcripts with 5'-UTR of variable length, the findings are likely relevant to gene expression during development and disease in higher eukaryotes. In conclusion, my studies during PhD reveal new targets and thus offer new prospects for improving chemotherapy with 5-FU. Mechanisms include (1) the formation of a double strand with its antisense mRNAs to potentially inhibit translation of mRNA, and (2) downstream inhibition of mRNA transcription read-through of a lncRNA. My work also revealed a lncRNA regulatory mechanism and RNA isoforms dangling growth and cell differentiation
Oliveira, Maria do Rosário Pereira. "Comparação da citotoxicidade de fármacos anticancerígenos e da sua mistura em células H9c2 diferenciadas." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18521.
Full textAtualmente, as terapias anticancerígenas normalmente consistem na combinação de fármacos e também em outras abordagens terapêuticas como a radioterapia, a cirurgia, entre outras, contribuindo para um prognóstico mais favorável dos doentes com cancro, bem como para a melhoria da sua qualidade de vida. Em contrapartida, o aumento da eficácia clínica é acompanhado por uma elevada incidência de efeitos secundários graves. Os efeitos secundários da quimioterapia são uma das grandes limitações à sua utilização e a cardiotoxicidade é considerada um dos efeitos secundários mais graves da quimioterapia. Esta dissertação teve como objetivo avaliar e comparar a toxicidade da doxorrubicina (DOX), do 5-fluorouracilo (5-FU), da ciclofosfamida (CIC) e da sua mistura (Cyclophosphamide+Adriamycin+5-Fluorouracil, doravante designada CAF) em células H9c2 diferenciadas. Para tal, as células H9c2 diferenciadas foram incubadas com DOX, 5-FU e CIC numa gama de concentrações entre 0-5 μM, durante 24 ou 48 horas. As células H9c2 foram também expostas a concentrações de 10, 25 e 50 μM de 5-FU ou CIC, durante 48 horas. Além disso, as células H9c2 diferenciadas foram incubadas com a mistura CAF nas concentrações de 0,2; 1 ou 5 μM de cada fármaco durante 48 horas. Após o tempo de incubação, foram realizados os seguintes testes de citotoxicidade: teste de redução do brometo de 3-(4,5-dimetil-tiazol-2-il)-2,5-difenil tetrazólio (MTT) e o teste de incorporação do vermelho neutro. A DOX no teste de redução do MTT demonstrou causar citotoxicidade em todas as concentrações testadas, quando comparado com as células controlo, sendo esta citotoxicidade dependente da concentração e mais acentuada para o maior tempo de exposição. No teste de incorporação do vermelho neutro, a DOX provocou citotoxicidade significativa nas concentrações de 0,5; 1; 2,5 e 5 μM, quando comparado com o controlo, sendo a citotoxicidade dependente do tempo de incubação.Relativamente ao 5-FU, após 24 horas de exposição observou-se citotoxicidade no teste de redução do MTT apenas na concentração de 5 μM. Quando as células foram expostas 48 horas ao 5-FU, verificou-se citotoxicidade significativa nas concentrações de 0,5; 1; 2,5 e 5 μM, em comparação com o controlo. No teste de incorporação do vermelho neutro, apenas as concentrações 1; 2,5 e 5 μM de 5-FU causaram toxicidade às células H9c2 diferenciadas. Quando as células foram incubadas com 10, 25 e 50 μM de 5-FU, todas as concentrações testadas causaram citotoxicidade quer esta tenha sido avaliada pelo ensaio de redução do MTT, quer pelo ensaio de incorporação do vermelho neutro. No que diz respeito à CIC, no teste de redução do MTT e às 24 horas, apenas a concentração de 1 μM causou citotoxicidade significativa. Porém, às 48 horas de incubação, as concentrações de 0,13; 0,2; 1 e 5 μM causaram citotoxicidade quando comparado com as células controlo. No teste de incorporação do vermelho neutro não se verificaram diferenças significativas em nenhuma concentração ou tempos de exposição testados, quando comparado com o controlo. No entanto, quando as células H9c2 diferenciadas foram incubadas com 10, 25 e 50 μM de CIC verificou-se toxicidade quando esta foi avaliada pelo teste de redução do MTT; no entanto no teste de incorporação do vermelho não se verificaram quaisquer diferenças significativas nas células expostas a CIC, quando comparado com as células do controlo. No que diz respeito à combinação de fármacos, CAF, esta na concentração de 0,2 μM (de cada fármaco da mistura), causa citotoxicidade de acordo com ambos os testes realizados em células H9c2 diferenciadas, quando comparado com as células do controlo. De facto, a mistura na concentração de 0,2 μM causa citotoxicidade no teste de redução do MTT significativamente maior do que cada um dos compostos isoladamente, quando a citotoxicidade foi avaliada pelo teste de redução do MTT. No teste de incorporação do vermelho neutro, no entanto, não existem diferenças significativas nos níveis de incorporação do corante no interior das células entre a mistura e cada um dos fármacos incubados isoladamente. Quando as células foram incubadas com 1 ou 5 μM de CAF (de cada fármaco da mistura), verificou-se que a toxicidade observada no teste de redução do MTT não era significativamente diferente entre a mistura CAF e qualquer mistura que contenha DOX, ou mesmo a DOX isoladamente. Verificaram-se diferenças significativas apenas entre a mistura e a associação de 5-FU+CIC, e os fármacos 5-FU e a CIC, isoladamente. Concluindo, a DOX, o 5-FU, a CIC e a CAF causam cardiotoxicidade em concentrações na ordem dos micromolar em células H9c2 diferenciadas, apesar dos valores encontrados serem diferentes consoante o teste de citotoxicidade utilizado. A DOX é o fármaco anticancerígeno mais tóxico no modelo celular utilizado, de acordo, com os dois testes de citotoxicidade realizados e parece contribuir de forma significativa para a toxicidade cardíaca da combinação CAF.
Currently, the most common therapeutic approaches for cancer combine drugs and also use other procedures, such as radiation therapy and surgery, among others. The use of combined therapeutics contributes both to attain a better prognosis and to improve the quality of life for people living with cancer. Unfortunately, the increased clinical efficacy of combined approaches is accompanied by a higher incidence of severe side effects. In fact, the use of chemotherapy causes severe side effects, which are major limitations for its use and with cardiotoxicity being considered one of its most serious adverse effects. This dissertation aimed to evaluate and compare the toxicity of doxorubicin (DOX), 5-fluorouracil (5-FU), cyclophosphamide (CIC), and their combination (Cyclophosphamide + Adriamycin + 5-Fluorouracil, herein after referred as CAF) in differentiated H9c2 cardiac cells. Thus, differentiated H9c2 cells were treated with several concentrations of DOX, 5-FU and CIC over a range from 0-5 μM, for 24 or 48 hours. Moreover, the cells H9c2 were treated with CAF mixtures containing 0.2; 1 or 5 μM of each drug during 48 hours. After the incubation period, the cytotoxicity was measured using the reduction of 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and neutral red incorporation assays. According to the MTT assay, the cells treated with DOX showed cytotoxicity for all concentrations tested when compared with the control, and the cytotoxicity was concentration-dependent and more notorious in the longest time of exposure. In the neutral red assay, when compared to the control, the cellular damage caused by DOX was observed for the concentrations of 0.5; 1; 2.5, and 5 μM and showed to be time-dependent. Regarding 5-FU, after an incubation time of 24 hours only the concentration of 5 μM showed significant toxicity in the MTT assay and the cytotoxicity increased in the longest incubation time. In fact, when the cells were exposed to 5-FU during 48 hours a significant cytotoxicity was shown at the concentrations of 0.5; 1; 2.5 to 5 μM, when compared with control. In the neutral red uptake assay, only the concentrations of 1; 2.5 and 5 μM of 5-FU caused toxicity to differentiated H9c2 cells. Additionally, when the cells were incubated with 10, 25 and 50 μM of 5-FU, all tested concentrations caused cytotoxicity observed on both the MTT reduction and neutral red uptake assays. Concerning CIC, in the MTT reduction assay, cells treated for 24 hours only showed significant cytotoxicity for the concentration 1 μM. However, after 48 hours, significant of incubation the cytotoxicity was observed for the concentrations of 0.13; 0.2; 1, and 5 μM when compared to the control cells. In the neutral red uptake assay, no significant differences were observed for any of the concentrations or exposure periods tested, when compared to the control cells. When differentiated H9c2 cells were incubated with 10, 25, and 50 μM of CIC, toxicity was seen in the MTT reduction assay; whereas for the neutral red uptake assay no significant differences where observed when compared to the control cells. Finally, the combination of drugs, CAF, at a concentration of 0.2 μM (of each drug) causes toxicity in the MTT reduction and neutral red uptake assays performed. In fact, the drugs in combination exhibited a significantly higher cytotoxicity, in the MTT assay when compared with each compound alone at a concentration of 0.2 μM. In the neutral red uptake assay, however, no significant differences were observed for the mixture when compared to each drug by itself. When the cells were treated with 1 and 5 μM of CAF, a significant toxicity was seen in the MTT reduction assay when compared to the control cells. Nevertheless, there were no significant differences between the CAF mixture and any mixture containing DOX, or even DOX alone. In fact, significant differences were only observed between CAF and 5-FU, or CIC or the association 5-FU + CIC. In summary, DOX, 5-FU, CIC, and CAF cause cardiotoxicity in differentiated H9c2 cells when in micro-molar concentrations, although with the assay used show different sensitivities to demonstrate that toxicity. Moreover, according to the results, for the cell model used and with the cytotoxicity assays performed, DOX is the most toxic anticancer drug tested and appears to contribute significantly to the cardiac toxicity of the combination CAF.
Plà, Solans Helena. "Design, synthesis and biological evaluation of new polymer-drug conjugates based on polyglutamic acid and 5-Fluorouracil for the treatment of advanced colorectal cancer." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/284644.
Full textEl agente 5-fluorouracilo (5-FU) es el tratamiento quimioterapéutico sistémico esencial para el tratamiento del cáncer colorectal. Sin embargo, la supervivencia global y superación de la enfermedad de pacientes tratados con 5-FU como primera línea de tratamiento es sólo del 10-15%. El uso de conjugados de polímero-fármaco (PDC) ha atraído gran atención en el campo de la administración controlada de fármacos para el tratamiento del cáncer. Éstos mejoran la acumulación de agentes citotóxicos en tejidos tumorales, aprovechando las características en la vascularización de los tumores, por consiguiente reduciendo la toxicidad en los tejidos sanos. Se han estudiado tres tipos diferentes de PDC basados en el polímero biodegradable ácido poly-(L-glutámico)(PGA): (i) Conjugado de PGA-5-FU; (ii) Conjugados de PGA-MMPpept-5FU utilizando enlazadores escindibles enzimáticamente, especialmente péptidos sensibles a MMP-7, ya que los niveles de algunas MMP aumentan a medida que el progresa el CRC; y (iii) conjugados de PGA-5FU-SN38 para evaluar la sinergia entre 5-FU y SN-38 conjugado en un solo vehículo. El conjugado PGA-5-FU mostró actividad terapéutica in vitro en las líneas celulares HCT-116.Fluc2-C9 y HT-29.FlucC4 e internalización mediante endocitosis, mediante la técnica de microscopía confocal. Además, experimentos de biodistribución in vivo confirmaron la acumulación en el tumor y la excreción vía renal y hepática. Con el conjugado PGA-MMP7-5FU se confirmó que la importancia del tipo de enlace entre el péptido MMP7 sensible (AHX-RPLALWRS-AHX) y el agente 5-FU; ya que se observó que la unión carbamato era demasiado estable in vitro, en comparación con la unión éster. Los estudios de citotxicidad in vitro con sobreexpresión de MMP7, confirmaron que la conformación en solución resultó muy accesible para la enzima MMP7. Finalmente, se sintetizó una familia de conjugados PGA-5FU-SN38 con diferentes proporciones de fármacos. Se estudió la sinergia entre ambos mediante el cálculo del índice de combinación, y se confirmó que la conjugación de SN-38 y 5-FU en un solo vehículo polimérico mostraba una fuerte sinérgica entre ambos fármacos en comparación con los PDC cargados con una única droga.
Book chapters on the topic "Fluorouracil – Toxicology"
Peiffer, Robert L., and J. E. Dillberger. "Corneal Lesions in Beagle Dogs Given Oral 5-Ethynyluracil Followed by 5-Fluorouracil." In Advances in Ocular Toxicology, 47–53. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5937-5_5.
Full textRtibi, Kaïs, Lamjed Marzouki, and Hichem Sebai. "Oxidative stress due to 5-fluorouracil and dietary antioxidants." In Toxicology, 291–95. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-819092-0.00028-5.
Full text