Dissertations / Theses on the topic 'Fluuid dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Fluuid dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Junfang. "Computer simulation of nanorheology for inhomogenous fluids." Australasian Digital Thesis Program, 2005. http://adt.lib.swin.edu.au/public/adt-VSWT20050620.095154.
Full textA thesis submitted in fulfilment of requirements for the degree of Doctor of Philosophy, Centre for Molecular Simulation, School of Information Technology, Swinburne University of Technology - 2005. Typescript. Bibliography: p. 164-170.
Mokhtarian, Farzad. "Fluid dynamics of airfoils with moving surface boundary-layer control." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/29026.
Full textApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Mitchell, Radford. "Transition to turbulence and mixing in a quasi-two-dimensional Lorentz force-driven Kolmogorov flow." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49045.
Full textDa, Ronch Andrea. "On the calculation of dynamic derivatives using computational fluid dynamics." Thesis, University of Liverpool, 2012. http://livrepository.liverpool.ac.uk/5513/.
Full textOr, Chun-ming, and 柯雋銘. "Flow development in the initial region of a submerged round jet in a moving environment." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42664512.
Full textMolale, Dimpho Millicent. "A computational evaluation of flow through porous media." Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/686.
Full textCardillo, Giulia. "Fluid Dynamic Modeling of Biological Fluids : From the Cerebrospinal Fluid to Blood Thrombosis." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX110.
Full textIn the present thesis, three mathematical models are described. Three different biomedical issues, where fluid dynamical aspects are of paramount importance, are modeled: i) Fluid-structure interactions between cerebro-spinal fluid pulsatility and the spinal cord (analytical modeling); ii) Enhanced dispersion of a drug in the subarachnoid space (numerical modeling); and iii) Thrombus formation and evolution in the cardiovascular system (numerical modeling).The cerebrospinal fluid (CSF) is a liquid that surrounds and protects the brain and the spinal cord. Insights into the functioning of cerebrospinal fluid are expected to reveal the pathogenesis of severe neurological diseases, such as syringomyelia that involves the formation of fluid-filled cavities (syrinxes) in the spinal cord.Furthermore, in some cases, analgesic drugs -- as well drugs for treatments of serious diseases such as cancers and cerebrospinal fluid infections -- need to be delivered directly into the cerebrospinal fluid. This underscores the importance of knowing and describing cerebrospinal fluid flow, its interactions with the surrounding tissues and the transport phenomena related to it. In this framework, we have proposed: a model that describes the interactions of the cerebrospinal fluid with the spinal cord that is considered, for the first time, as a porous medium permeated by different fluids (capillary and venous blood and cerebrospinal fluid); and a model that evaluates drug transport within the cerebrospinal fluid-filled space around the spinal cord --namely the subarachnoid space--.The third model deals with the cardiovascular system. Cardiovascular diseases are the leading cause of death worldwide, among these diseases, thrombosis is a condition that involves the formation of a blood clot inside a blood vessel. A computational model that studies thrombus formation and evolution is developed, considering the chemical, bio-mechanical and fluid dynamical aspects of the problem in the same computational framework. In this model, the primary novelty is the introduction of the role of shear micro-gradients into the process of thrombogenesis.The developed models have provided several outcomes. First, the study of the fluid-structure interactions between cerebro-spinal fluid and the spinal cord has shed light on scenarios that may induce the occurrence of Syringomyelia. It was seen how the deviation from the physiological values of the Young modulus of the spinal cord, the capillary pressures at the SC-SAS interface and the permeability of blood networks can lead to syrinx formation.The computational model of the drug dispersion has allowed to quantitatively estimate the drug effective diffusivity, a feature that can aid the tuning of intrathecal delivery protocols.The comprehensive thrombus formation model has provided a quantification tool of the thrombotic deposition evolution in a blood vessel. In particular, the results have given insight into the importance of considering both mechanical and chemical activation and aggregation of platelets
Chambers, Steven B. "Investigation of combustive flows and dynamic meshing in computational fluid dynamics." Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/1324.
Full textKachani, Soulaymane, and Georgia Perakis. "Modeling Travel Times in Dynamic Transportation Networks; A Fluid Dynamics Approach." Massachusetts Institute of Technology, Operations Research Center, 2001. http://hdl.handle.net/1721.1/5224.
Full textAndersson, Tomas. "Controlling the fluid dynamics : an analysis of the workflow of fluids." Thesis, University of Gävle, Department of Mathematics, Natural and Computer Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-155.
Full textA scene containing dynamic fluids can be created in a number of ways. There are two approaches that will highlight the problems and obstacles that might occur. Today’s leading fluid simulator, RealFlow, simulates the fluid dynamics. A comparison between the two approaches will be made and are analyzed. Through experimentation, one of the approaches fails to produce the set requirements in the experiment and furthermore the two approaches differ in efficiency.
Hsia, Chun-Hsiung. "Bifurcation and stability in fluid dynamics and geophysical fluid dynamics." [Bloomington, Ind.] : Indiana University, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3223038.
Full text"Title from dissertation home page (viewed June 28, 2007)." Source: Dissertation Abstracts International, Volume: 67-06, Section: B, page: 3165. Adviser: Shouhong Wang.
Hussain, Muhammad Imtiaz. "Computational fluid dynamics." Thesis, Aberystwyth University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257607.
Full textGeorgeton, Gus Konstantinos. "Group contribution equations of state for complex fluid mixtures." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/11772.
Full textKachani, S. (Soulaymane). "Dynamic travel time models for pricing and route guidance : a fluid dynamics approach." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8527.
Full textIncludes bibliographical references (leaves 193-201).
This thesis investigates dynamic phenomena that arise in a variety of systems that share similar characteristics. A common characteristic of particular interest in this work is travel time. We wish to address questions of the type: How long does it take a driver to traverse a route in a transportation network? How long does a unit of product remain in inventory before being sold? As a result, our goal is not only to develop models for travel times as they arise in a variety of dynamically evolving environments, but also to investigate the application of these models in the contexts of dynamic pricing, inventory management, traffic control and route guidance. To address these issues, we develop general models for travel times. To make these models more accessible, we describe them as they apply to transportation systems. We propose first-order and second-order fluid models. We enhance these models to account for spillback and bottleneck phenomena. Based on piecewise linear and piecewise quadratic approximations of the departure or exit flows, we propose several classes of travel time functions. In the area of supply chain, we propose and study a fluid model of pricing and inventory management for make-to-stock manufacturing systems. This model is based on how price and level of inventory affect the time a unit of product remains in inventory. The model applies to non-perishable products. Our motivation is based on the observation that in inventory systems, a unit of product incurs a delay before being sold. This delay depends on the level of inventory of this product, its unit price, and prices of competitors.
(Cont.) The model includes joint pricing, production and inventory decisions in a competitive capacitated multi-product dynamic environment. Finally, we consider the anticipatory route guidance problem, an extension of the dynamic user-equilibrium problem. This problem consists of providing messages to drivers, based on forecasts of traffic conditions, to assist them in their path choice decisions. We propose two equivalent formulations that are the first general analytical formulations of this problem. We establish, under weak assumptions, the existence of a solution to this problem.
by Soulaymane Kachani.
Ph.D.
Harris, Rodney Morton. "THE ONSET OF INSTABILITY IN A TRIPLY-DIFFUSIVE FLUID LAYER." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275307.
Full textCostis, Christopher E. "Separation and wakes over three-dimensional bodies." Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/54745.
Full textPh. D.
Götz, Dario [Verfasser]. "Three topics in fluid dynamics: Viscoelastic, generalized Newtonian, and compressible fluids / Dario Götz." München : Verlag Dr. Hut, 2012. http://d-nb.info/1029400113/34.
Full textZitzmann, Tobias. "Adaptive modelling of dynamic conjugate heat transfer and air movement using computational fluid dynamics." Thesis, De Montfort University, 2007. http://hdl.handle.net/2086/4287.
Full textBarran, Brian Arthur. "View dependent fluid dynamics." Texas A&M University, 2006. http://hdl.handle.net/1969.1/3827.
Full textAcharya, Rutvika. "Fluid Dynamics of Phonation." Thesis, KTH, Mekanik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149250.
Full textGlorioso, Paolo. "Fluid dynamics in action." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107318.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 207-213).
In this thesis we formulate an effective field theory for nonlinear dissipative fluid dynamics. The formalism incorporates an action principle for the classical equations of motion as well as a systematic approach to thermal and quantum fluctuations around the classical motion of fluids. The dynamical degrees of freedom are Stuckelberg-like fields associated with diffeomorphisms and gauge transformations, and are related to the conservation of the stress tensor and a U(1) current if the fluid possesses a charge. This inherently geometric construction gives rise to an emergent "fluid space-time", similar to the Lagrangian description of fluids. We develop the variational formulation based on symmetry principles defined on such fluid space-time. Through a prescribed correspondence, the dynamical fields are mapped to the standard fluid variables, such as temperature, chemical potential and velocity. This allows to recover the standard equations of fluid dynamics in the limit where fluctuations are negligible. Demanding the action to be invariant under a discrete transformation, which we call local KMS, guarantees that the correlators of the stress tensor and the current satisfy the fluctuation-dissipation theorem. Local KMS invariance also automatically ensures that the constitutive relations of the conserved quantities satisfy the standard constraints implied e.g. by the second law of thermodynamics, and leads to a new set of constraints which we call generalized Onsager relations. Requiring the above properties to hold beyond tree-level leads to introducing fermionic partners of the original degrees of freedom, and to an emergent supersymmetry. We also outline a procedure for obtaining the effective field theory for fluid dynamics by applying the holographic Wilsonian renormalization group to systems with a gravity dual.
by Paolo Glorioso.
Ph. D.
Timmermans, Mary-Louise Elizabeth. "Studies in fluid dynamics." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621995.
Full textYildirim, B. Gazi. "A global preconditioning method for the Euler equations." Master's thesis, Mississippi State : Mississippi State University, 2003. http://library.msstate.edu/etd/show.asp?etd=etd-07152003-164237.
Full textEllam, Darren John. "Modelling smart fluid devices using computational fluid dynamics." Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398597.
Full textVan, Ke Sum. "Dynamics and stability of curved pipes conveying fluid." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66108.
Full textHajghayesh, Mergen. "Dynamics of fluid-conveying pipes." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114479.
Full textCette thèse traite de la dynamique linéaire et non linéaire de tuyaux parcourus par un fluide. Composée de quatre articles scientifiques ayant fait l'objet d'un examen critique, trois publiés dans des revues techniques et un soumis pour publication, l'objectif étant d'étudier certains aspects du comportement dynamique des conduits extensibles et inextensibles transportant du fluide, de manière théorique et expérimentale.En particulier, (i) la dynamique tridimensionnelle non linéaire d'un tuyau de transport de fluide, contraint par un réseau de quatre ressorts attachés entre les deux bouts est examinée d'un point de vue théorique ainsi qu'expérimental; (ii) le comportement dynamique tridimensionnel d'un tuyau aux extrémités encastrées-libres avec une masse additionnelle au bout libre et un support flexible (ressort) supplémentaire, est également étudié; (iii) la dynamique non linéaire plane d'un tuyau extensible encastre-libre transportant du fluide est étudiée théoriquement par deux méthodes numériques différentes; (iv) le calcul du déphasage sur la longueur du conduit de mesure d'un débitmètre à effet Coriolis (et donc, du débit massique) est mis au point analytiquement au moyen d'une technique de perturbation et est confirmé numériquement. Lors des analyses théoriques, la méthode de Galerkin et les équations de Lagrange pour les systèmes contenant des volumes vides sont utilisés pour obtenir un ensemble d'équations différentielles ordinaires non-linéaires du second ordre. Ces équations sont résolues grâce à un schéma de différences finies de Houbolt, la technique de continuation à pseudo-longueur d'arc, et l'intégration temporelle directe par l'intermédiaire d'une technique de Rosenbrock modifiée. La méthode des délais multiples (dite "multiple scale method"), une technique analytique approximative, est également utilisée pour prédire le déphasage le long du tuyau de mesure d'un débitmètre à effet Coriolis.Une série d'expériences ont été réalisées à l'aide de tuyaux en silicone transportant de l'eau afin de pouvoir vérifier de manière concluante la validité des modèles théoriques.
Heslop, S. E. "Aspects of volcanic fluid dynamics." Thesis, Lancaster University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383570.
Full textShaw, G. J. "Multigrid methods in fluid dynamics." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371582.
Full textOgilvy, Iver. "Fluid dynamics of underwater explosions." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/8840/.
Full textKhan, Sharon. "Studies in geophysical fluid dynamics." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620035.
Full textFurtak-Cole, Eden. "Three Environmental Fluid Dynamics Papers." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/6913.
Full textZiegenhein, Thomas. "Fluid dynamics of bubbly flows." Helmholtz-Zentrum Dresden - Rossendorf, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-213581.
Full textPrabhanjan, Devanahalli G. "Influence of coil characteristics on heat transfer to Newtonian fluids." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36910.
Full textComparative study has shown that the outer and total heat transfer coefficients were significantly lower in natural than in forced convection water bath. However, inner heat transfer coefficient was not significantly affected. Flow rate as low as 0.001 m.s-1 in the water bath improved the outer and total heat transfer coefficients by 35 and 22% respectively. One could expect a higher rate with an increase in water re-circulation rate inside the water bath. Percent rise in heat transfer was limited to seven with respect to inner heat transfer. With the Pearson correlation, it was possible to express total heat transfer rate directly in terms of outer and inner rates. Significant interactions were observed between variables and constants.
Experiments with 2 pitch cases were conducted with water to water heat transfer using coils to determine the Nusselt number correlation for natural convection. Characteristic lengths were changed in the models. The Nusselt number was under-predicted by 25 to 37% for water bath temperatures of 75° and 95°C respectively. Flow rate inside the coil had slight effect on Nusselt number due to change in the temperature gradient along the length of the coil.
Studies conducted with three base oils have shown significant difference in viscosity after heating the oil for several turns. Each fluid was heated in a distinct flow regime. The observed Nusselt number inside the coil for low Reynolds number was as high as an order of magnitude than the predicted values calculated by Seider-Tate relation for laminar flow. Vorticies formed associated with the eddy structure could very well be the cause for this kind of rise in the value.
Preliminary study conducted has shown a higher rise in temperature of processing fluid in case of helical coil compared to that of a straight tube. Larger the diameter of the tube better was the heat transfer. An elevated bath temperature had higher heat transfer.
Livescu, Silviu. "Mathematical and numerical modeling of coating flows." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 3.48 Mb., 279 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3221057.
Full textZipp, Robert Philip. "Turbulent mixing of unpremixed reactants in stirred tanks." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184832.
Full textPagliuca, Giampaolo. "Model reduction for flight dynamics using computational fluid dynamics." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3029018/.
Full textThillaisundaram, Ashok. "Aspects of fluid dynamics and the fluid/gravity correspondence." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267097.
Full textShen, Jihua. "Formation and characteristics of sprays from annular viscous liquid jet breakup." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ32723.pdf.
Full textAzouz, Idir. "Numerical simulation of laminar and turbulent flows of wellbore fluids in annular passages of arbitrary cross-section /." Access abstract and link to full text, 1994. http://0-wwwlib.umi.com.library.utulsa.edu/dissertations/fullcit/9500702.
Full textReichl, Paul 1973. "Flow past a cylinder close to a free surface." Monash University, Dept. of Mechanical Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/9212.
Full textHunton, B. J. "Vortex dynamics." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259909.
Full textHolland, David M. "Nano-scale computational fluid dynamics with molecular dynamics pre-simulations." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/72851/.
Full textBarker, Shaun, and sbarker@eos ubc ca. "Dynamics of fluid flow and fluid chemistry during crustal shortening." The Australian National University. Research School of Earth Sciences, 2007. http://thesis.anu.edu.au./public/adt-ANU20090711.074630.
Full textPaton, Jonathan. "Computational fluid dynamics and fluid structure interaction of yacht sails." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/14036/.
Full textPetrus, Ryan Curtis. "Dynamics of fluid-conveying Timoshenko pipes." Texas A&M University, 2006. http://hdl.handle.net/1969.1/3822.
Full textDavidson, Jonathan. "Dynamics of semi-discretised fluid flow." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364471.
Full textValluri, Prashant. "Multiphase fluid dynamics in structured packings." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415894.
Full textWilliams, A. G. "The fluid dynamics of radio sources." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373717.
Full textSahasrabudhe, Mandar. "Neural network applications in fluid dynamics." Thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-08112002-221615.
Full textKatz, Aaron Jon. "Meshless methods for computational fluid dynamics /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full text