Academic literature on the topic 'Flux de chaleur au divertor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flux de chaleur au divertor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flux de chaleur au divertor"
Bougriou, Cherif. "Etude du Récupérateur de Chaleur Croisé à Tubes à Ailette." Journal of Renewable Energies 5, no. 1 (June 30, 2002): 59–74. http://dx.doi.org/10.54966/jreen.v5i1.887.
Full textBougriou, Cherif. "Etude d’un Récupérateur de Chaleur Croisé à Tubes Lisses." Journal of Renewable Energies 2, no. 2 (December 31, 1999): 109–22. http://dx.doi.org/10.54966/jreen.v2i2.934.
Full textAnthore, Anne, Sébastien Jézouin, François Parmentier, Ulf Gennser, and Frédéric Pierre. "Limite quantique du flux de chaleur." Reflets de la physique, no. 42 (December 2014): 16–19. http://dx.doi.org/10.1051/refdp/201442016.
Full textAboubacry Mbodji, Oumou, Alassane Diene, Seydou Faye, Youssou Traore, Mamadou Babacar Ndiaye, Issa Diagne, and Gregoire Sissoko. "ETUDE DU TRANSFERT THERMIQUE EN REGIME DE MODULATION DE FREQUENCE A TRAVERS UN PANNEAU A BASE DE FIBRE DE BOIS: INFLUENCE DES PARAMETRES EXTERIEURS." International Journal of Advanced Research 9, no. 10 (October 31, 2021): 805–20. http://dx.doi.org/10.21474/ijar01/13613.
Full textRen, J., D. C. Donovan, J. G. Watkins, H. Q. Wang, C. Lasnier, T. Looby, J. Canik, et al. "Measurements of multiple heat flux components at the divertor target by using surface eroding thermocouples (invited)." Review of Scientific Instruments 93, no. 10 (October 1, 2022): 103541. http://dx.doi.org/10.1063/5.0101719.
Full textTamene, Youcef, Said Abboudi, and Cherif Bougriou. "Simulation des transferts thermiques transitoires à travers un mur multicouche soumis à des conditions de flux solaire et de convection." Journal of Renewable Energies 12, no. 1 (October 26, 2023): 117–24. http://dx.doi.org/10.54966/jreen.v12i1.125.
Full textKolemen, E., S. L. Allen, B. D. Bray, M. E. Fenstermacher, D. A. Humphreys, A. W. Hyatt, C. J. Lasnier, et al. "Heat flux management via advanced magnetic divertor configurations and divertor detachment." Journal of Nuclear Materials 463 (August 2015): 1186–90. http://dx.doi.org/10.1016/j.jnucmat.2014.11.099.
Full textWu, N., J. Cheng, H. L. Du, Z. H. Huang, L. W. Yan, W. C. Wang, K. Y. Yi, et al. "Effect of the E × B drift on the redistribution of the divertor particle flux in the HL-2A ECRH plasmas." Physics of Plasmas 30, no. 1 (January 2023): 012501. http://dx.doi.org/10.1063/5.0126491.
Full textKumpilov, D., R. Rodionov, A. Kovalev, Y. Kashchuk, D. Portnov, and S. Obudovsky. "Activation of ITER Divertor Neutron Flux Monitor." Journal of Instrumentation 14, no. 11 (November 20, 2019): C11019. http://dx.doi.org/10.1088/1748-0221/14/11/c11019.
Full textCastejón, F., J. L. Velasco, A. López-Fraguas, A. Tarancón, J. Guasp, F. Tabarés, M. A. Pedrosa, E. de la Cal, and M. A. Ochando. "Flux-expansion divertor studies in TJ-II." Nuclear Fusion 49, no. 8 (July 17, 2009): 085019. http://dx.doi.org/10.1088/0029-5515/49/8/085019.
Full textDissertations / Theses on the topic "Flux de chaleur au divertor"
Gallo, Alberto. "Impact of the plasma geometry on the divertor power exhaust in a magnetic fusion reactor." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0001/document.
Full textA deep understanding of plasma transport at the edge of a magnetically confined fusion device is mandatory for a sustainable and controlled handling of the power exhaust. In the next-generation fusion device ITER, technological limits constrain the peak heat flux on the divertor. For a given exhaust power the peak heat flux is determined by the extent of the plasma footprint on the wall. Heat flux profiles at the divertor targets of X-point configurations can be parametrized by using two length scales for the transport of heat in SOL. In this work, we challenge the current interpretation of these two length scales by studying the impact of divertor geometry modifications on the heat exhaust. In particular, a significant broadening of the heat flux profiles at the outer divertor target is diagnosed while increasing the length of the outer divertor leg. Modelling efforts showed that diffusive simulations well reproduce the experimental heat flux profiles for short-legged plasmas. Conversely, the broadening of the heat flux for a long divertor leg is reproduced by a turbulent model, highlighting the importance of turbulent transport not only in the main SOL but also in the divertor. These results question the current interpretation of the heat flux width as a purely main SOL transport length scale. In fact, long divertor leg magnetic configurations highlighted the importance of asymmetric divertor transport. We therefore conclude that main SOL and divertor SOL transport cannot be arbitrarily disentangled and we underline the importance of the divertor magnetic geometry in enhancing asymmetric turbulent transport with the potential benefit of an unexpected power spreading
Gallo, Alberto. "Impact of the plasma geometry on the divertor power exhaust in a magnetic fusion reactor." Electronic Thesis or Diss., Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0001.
Full textA deep understanding of plasma transport at the edge of a magnetically confined fusion device is mandatory for a sustainable and controlled handling of the power exhaust. In the next-generation fusion device ITER, technological limits constrain the peak heat flux on the divertor. For a given exhaust power the peak heat flux is determined by the extent of the plasma footprint on the wall. Heat flux profiles at the divertor targets of X-point configurations can be parametrized by using two length scales for the transport of heat in SOL. In this work, we challenge the current interpretation of these two length scales by studying the impact of divertor geometry modifications on the heat exhaust. In particular, a significant broadening of the heat flux profiles at the outer divertor target is diagnosed while increasing the length of the outer divertor leg. Modelling efforts showed that diffusive simulations well reproduce the experimental heat flux profiles for short-legged plasmas. Conversely, the broadening of the heat flux for a long divertor leg is reproduced by a turbulent model, highlighting the importance of turbulent transport not only in the main SOL but also in the divertor. These results question the current interpretation of the heat flux width as a purely main SOL transport length scale. In fact, long divertor leg magnetic configurations highlighted the importance of asymmetric divertor transport. We therefore conclude that main SOL and divertor SOL transport cannot be arbitrarily disentangled and we underline the importance of the divertor magnetic geometry in enhancing asymmetric turbulent transport with the potential benefit of an unexpected power spreading
Grosjean, Alex. "Impact of geometry and shaping of the plasma facing components on hot spot generation in tokamak devices." Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0556.
Full textThis PhD falls within ITER project support, aiming to study the thermal behavior of ITER-like PFC prototypes in two superconducting tokamaks: EAST (Hefei) and WEST (Cadarache). These prototypes correspond to castellated tungsten monoblocks placed along a cooling tube with small gaps (0.5 mm) between them, called plasma-facing units, to extract the heat from the components. The introduction of gaps between monoblocks (toroidal) and plasma-facing units (poloidal), to relieve the thermomechanical stresses in the divertor, implies that poloidal leading edges may be exposed to near-normal incidence angle. A local overheating is expected in a thin lateral band at the top of each monoblocks, which can be enhanced when the neighboring components are misaligned. In this work, we propose to study the impact of two geometries (sharp and chamfered LEs) of these components, as well as their misalignments on local hot spot generation, by means of embedded diagnostics (TC/FBG), and a submillimeter infrared system (~0.1 mm/pixel), whose emissivity varies with wavelength, and the temperature, but above all, the surface state of the component, which evolves under plasma exposure, during the experimental campaigns. The divertor Langmuir probes measure the plasma temperature, and thus estimate the ion Larmor radius that may play a role in the local heat flux distribution around poloidal and toroidal edges. The results presented in this thesis, confirming the modelling predictions by experimental measurements, support the final decision by ITER to include 0.5 mm toroidal beveling of monoblocks on the vertical divertor targets to protect poloidal leading edges from excessive heat flux
Moshman, Nathan David. "Implantation, flux and recoil distributions for plasma species impinging on tokamak divertor materials." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p1464056.
Full textTitle from first page of PDF file (viewed June 16, 2009). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 88).
Costanzo, Laurent. "Etude expérimentale des aspects topologiques du divertor ergodique de Tore Supra." Aix-Marseille 1, 2001. http://www.theses.fr/2001AIX11033.
Full textGable, Robert. "Température, gradient et flux de chaleur terrestre : mesures, interprétation /." Orléans : Éd. du Bureau de recherches géologiques et minières, 1986. http://catalogue.bnf.fr/ark:/12148/cb377010343.
Full textCrosatti, Lorenzo. "Experimental and numerical investigation of the thermal performance of gas-cooled divertor modules." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24717.
Full textCommittee Co-Chair: Minami Yoda, Co-Advisor; Committee Co-Chair: Said I. Abdel-Khalik; Committee Member: Donald R. Webster; Committee Member: Narayanan M. Komerath; Committee Member: S. Mostafa Ghiaasiaan; Committee Member: Yogendra Joshi
Gwon, Hyoseong. "Study on the Transport of High Heat Flux and the Thermal Mechanical Response of Fusion Reactor Divertor." Kyoto University, 2014. http://hdl.handle.net/2433/192208.
Full textAthier, Gilles. "Optimisation des flux thermiques au sein de réseaux d'échangeurs de chaleur." Toulouse, INPT, 1997. http://www.theses.fr/1997INPT005G.
Full textJakubowski, Marcin. "Magnetic field topology and heat flux patterns under the influence of the dynamic ergodic divertor of the TEXTOR tokamak." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972555390.
Full textBooks on the topic "Flux de chaleur au divertor"
Gable, Robert. Température, gradient et flux de chaleur terrestre: Mesures, interprétation. Orléans: Editions du Bureau de recherches géologiques et minières, Service géologique national, 1986.
Find full textBook chapters on the topic "Flux de chaleur au divertor"
Barabash, V. R., R. N. Giniatulin, V. L. Komarov, A. A. Gervash, Yu G. Prokofiev, Yu M. Krivchenkov, and E. K. Privalova. "TESTING OF THE DIVERTOR MOCK-UPS UNDER HEAT FLUX LOADING." In Fusion Technology 1992, 176–80. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89995-8.50026-6.
Full textDeksnis, E., M. Garribba, D. Martin, C. Sborchia, and R. Tivey. "DESIGN OF HIGH HEAT FLUX COMPONENTS FOR THE JET PUMPED DIVERTOR." In Fusion Technology 1990, 478–82. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-88508-1.50079-7.
Full textSchlosser, J., and J. Boscary. "High heat flux tests at divertor relevant conditions on water-cooled swirl tube targets." In Fusion Technology 1994, 295–98. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-444-82220-8.50042-x.
Full textLinke, J., G. Breitbach, R. Duwe, A. Gervash, M. Rödig, and B. Wiechers. "High heat flux performance of divertor modules for ITER with beryllium and carbon armor." In Fusion Technology 1996, 271–74. Elsevier, 1997. http://dx.doi.org/10.1016/b978-0-444-82762-3.50038-0.
Full textRingenbach, Nicolas. "Bilan radiatif et flux de chaleur en climatologie urbaine : mesures et modélisation. Exemple : Strasbourg." In Quatre ans de recherche urbaine 2001-2004. Volume 2, 269–73. Presses universitaires François-Rabelais, 2006. http://dx.doi.org/10.4000/books.pufr.537.
Full textShi, Bo, Wei Lu, Shengnan He, Wenjing Pu, Junli Qi, Hui Zhang, Baoming Wang, et al. "Experimental Study of Helium Discharge on Linear Plasma Device." In Advances in Energy Research and Development. IOS Press, 2022. http://dx.doi.org/10.3233/aerd220017.
Full textYuki, Kazuhisa. "Heat Transfer Enhancement Using Unidirectional Porous Media under High Heat Flux Conditions." In Porous Fluids - Advances in Fluid Flow and Transport Phenomena in Porous Media. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96594.
Full textŠmid, I., E. Kny, N. Reheis, R. D. Watson, C. D. Croessmann, T. J. Lutz, A. Cardella, H. Bolt, and F. Moons. "HIGH HEAT FLUX TESTING AND CYCLING OF ACTIVELY COOLED TZM-Mo41Re DIVERTOR TARGETS WITH BRAZED GRAPHITE AND CC ARMOR." In Fusion Technology 1990, 523–27. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-88508-1.50088-8.
Full textConference papers on the topic "Flux de chaleur au divertor"
Kaschuck Yu, A., A. V. Batyunin, O. G. Egorov, A. V. Krasil'nikov, A. Yu Tsutskih, V. V. Frunze, Giuseppe Gorini, Francesco P. Orsitto, Elio Sindoni, and Marco Tardocchi. "Divertor Neutron Flux Monitor: Conceptual Design and Calibration." In 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2905086.
Full textLumsdaine, A., J. Boscary, E. Clark, K. Ekici, J. Harris, D. McGinnis, J. D. Lore, A. Peacock, and J. Tretter. "Wendelstein 7-X high heat-flux divertor scraper element." In 2013 IEEE 25th Symposium on Fusion Engineering (SOFE). IEEE, 2013. http://dx.doi.org/10.1109/sofe.2013.6635357.
Full textCastejón, F., A. López-Fraguas, A. Tarancón, J. L. Velasco, Jesús Clemente-Gallardo, Pierpaolo Bruscolini, Francisco Castejón, Pablo Echenique, and José Félix Sáenz-Lorenzo. "The search for a flux-expansion divertor in TJ-II." In LARGE SCALE SIMULATIONS OF COMPLEX SYSTEMS, CONDENSED MATTER AND FUSION PLASMA: Proceedings of the BIFI2008 International Conference: Large Scale Simulations of Complex Systems, Condensed Matter and Fusion Plasma. AIP, 2008. http://dx.doi.org/10.1063/1.3033358.
Full textHood, Ryan, Robert Kolasinski, Josh Whaley, Jon Watkins, and Albert Talin. "Rugged hydrogen sensor development for charge-exchange flux measurements on wall and divertor." In Proposed for presentation at the APS Division of Plasma Physics Annual Meeting. US DOE, 2020. http://dx.doi.org/10.2172/1830992.
Full textGarnier, Bertrand. "Mesure de température et de flux de chaleur à base de couches minces ou épaisses: atouts, fabrication et applications." In 17th International Congress of Metrology, edited by Bernard Larquier. Les Ulis, France: EDP Sciences, 2015. http://dx.doi.org/10.1051/metrology/20150001005.
Full textGriswold, M. E., S. Korepanov, and M. C. Thompson. "End loss analyzer system for measurements of plasma flux at the C-2U divertor electrode." In OPEN MAGNETIC SYSTEMS FOR PLASMA CONFINEMENT (OS2016): Proceedings of the 11th International Conference on Open Magnetic Systems for Plasma Confinement. Author(s), 2016. http://dx.doi.org/10.1063/1.4964199.
Full textYouchison, Dennis L., Theron D. Marshall, Jimmie M. McDonald, Thomas J. Lutz, Robert D. Watson, Daniel E. Driemeyer, David L. Kubik, Kevin T. Slattery, and Theodore H. Hellwig. "Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target." In Optical Science, Engineering and Instrumentation '97, edited by Albert T. Macrander and Ali M. Khounsary. SPIE, 1997. http://dx.doi.org/10.1117/12.294495.
Full textWatanabe, S., S. Ohsawa, M. Takagi, N. Ohno, Y. Uesugi, and S. Takamura. "Generation of high heat flux plasmas by rf heating in divertor plasma simulator NAGDIS-II." In The twelfth topical conference on radio frequency power in plasmas. AIP, 1997. http://dx.doi.org/10.1063/1.53372.
Full textKwon, S., J. S. Park, and K. Im. "Thermo-mechanical evaluation of a water cooled high heat flux unit for the K-DEMO divertor." In 2015 IEEE 26th Symposium on Fusion Engineering (SOFE). IEEE, 2015. http://dx.doi.org/10.1109/sofe.2015.7482381.
Full textHood, Ryan, Robert Kolasinski, Dinh Truong, Josh Whaley, Dmitry Rudakov, Tyler Abrams, Jonathan Watkins, and Albert Talin. "Development of rugged hydrogen sensors for measuring charge-exchange neutral flux at the wall and divertor." In Proposed for presentation at the American physical society division of plasma physics annual meeting held November 8-12, 2021 in Pittsburgh, PA. US DOE, 2021. http://dx.doi.org/10.2172/1895018.
Full textReports on the topic "Flux de chaleur au divertor"
Rognlien, T., D. Ryutov, M. Makowski, V. Soukhanovskii, M. Umansky, R. Cohen, D. HIll, and I. Joseph. Innovative Divertor Development to Solve the Plasma Heat-Flux Problem. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/948969.
Full textHoffman, Alan L., and Richard D. Milroy. High Flux FRC Facility for the Stability, Confinement and ITER Divertor Studies. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1121123.
Full textMelanie, Haupt, and Hellweg Stefanie. Synthèse du projet conjoint du PNR 70 «Gestion des déchets pour soutenir la transition énergétique (wastEturn)». Swiss National Science Foundation (SNSF), January 2020. http://dx.doi.org/10.46446/publication_pnr70_pnr71.2020.2.fr.
Full text