To see the other types of publications on this topic, follow the link: Flux-line lattices.

Journal articles on the topic 'Flux-line lattices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Flux-line lattices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Thompson, A. M., and M. A. Moore. "Flux-line lattices in artificially layered superconductors." Physical Review B 57, no. 21 (1998): 13854–60. http://dx.doi.org/10.1103/physrevb.57.13854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harada, K., T. Matsuda, J. E. Bonevich, et al. "Real-time observation of vortex lattices in a superconductor." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 1050–51. http://dx.doi.org/10.1017/s0424820100151088.

Full text
Abstract:
Previous observations of magnetic flux-lines (vortex lattices) in superconductors, such as the field distribution of a flux-line, and flux-line dynamics activated by heat and current, have employed the high spatial resolution and magnetic sensitivity of electron holography. And recently, the 2-D static distribution of vortices was also observed by this technique. However, real-time observations of the vortex lattice, in spite of scientific and technological interest, have not been possible due to experimental difficulties. Here, we report the real-time observation of vortex lattices in a thin
APA, Harvard, Vancouver, ISO, and other styles
3

Cai, Zhi-Xiong, Girija Dubey, and David O. Welch. "Numerical simulations of flux-line lattices in layered superconductors." Physica C: Superconductivity 299, no. 1-2 (1998): 91–98. http://dx.doi.org/10.1016/s0921-4534(98)00077-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cai, Zhi-Xiong, David O. Welch, and Girija S. Dubey. "Isothermal Elastic Constants of Flux-Line Lattice in Layered Superconductors." International Journal of Modern Physics B 12, no. 29n31 (1998): 2974–81. http://dx.doi.org/10.1142/s0217979298001897.

Full text
Abstract:
A model of the effective interaction between the magnetic flux-lines in a layered superconductor is derived from the Lawrence–Doniach model. We show analytically that the intralayer interaction energy can be evaluated using the Ewald summation technique. The melting of flux line lattices is studied using Langevin dynamics simulation of the model with various values of interlayer coupling strength and pinning intensities. The thermal fluctuation terms of the isothermal shear modulus are found to increase sharply at the melting transition temperature for systems with or without pinning, while th
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Hong-Ru, and S. T. Chui. "Statics and dynamics of flux line lattices of high-Tcsuperconductors." Journal of Physics: Condensed Matter 4, no. 2 (1992): 445–59. http://dx.doi.org/10.1088/0953-8984/4/2/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yethiraj, M., H. A. Mook, G. D. Wignall, et al. "Small-angle neutron scattering study of flux line lattices in twinnedYBa2Cu3O7." Physical Review Letters 70, no. 6 (1993): 857–60. http://dx.doi.org/10.1103/physrevlett.70.857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nogawa, Tomoaki, Hajime Yoshino, and Hiroshi Matsukawa. "Topological Defects in Moving Charge Density Waves and Flux Line Lattices." Progress of Theoretical Physics Supplement 157 (2005): 160–63. http://dx.doi.org/10.1143/ptps.157.160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BISHOP, D. J., P. L. GAMMEL, D. A. HUSE, and C. A. MURRAY. "Magnetic Flux-Line Lattices and Vortices in the Copper Oxide Superconductors." Science 255, no. 5041 (1992): 165–72. http://dx.doi.org/10.1126/science.255.5041.165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Forgan, Ted, Richard J. Lycett, Charlotte Bowell, et al. "Investigation of flux line lattices by SANS with unpolarized and polarized neutrons." Physica B: Condensed Matter 397, no. 1-2 (2007): 71–75. http://dx.doi.org/10.1016/j.physb.2007.02.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Hong-Ru. "Structure of Flux Line Lattices in Tilt Magnetic Fields of Anisotropic Superconductos." Communications in Theoretical Physics 24, no. 2 (1995): 151–58. http://dx.doi.org/10.1088/0253-6102/24/2/151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kim, Philip, Zhen Yao, Cristian A. Bolle, and Charles M. Lieber. "Structure of flux line lattices with weak disorder at large length scales." Physical Review B 60, no. 18 (1999): R12589—R12592. http://dx.doi.org/10.1103/physrevb.60.r12589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Metlushko, V., U. Welp, G. W. Crabtree, et al. "Nonlinear flux-line dynamics in vanadium films with square lattices of submicron holes." Physical Review B 59, no. 1 (1999): 603–7. http://dx.doi.org/10.1103/physrevb.59.603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Emig, Thorsten, and Mehran Kardar. "Thermodynamic Fingerprints of Disorder in Flux Line Lattices and Other Glassy Mesoscopic Systems." Physical Review Letters 85, no. 10 (2000): 2176–79. http://dx.doi.org/10.1103/physrevlett.85.2176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhao, Z. G., Y. X. You, J. Wang, and M. Liu. "Two-step depinning and re-entrant behavior of three-dimensional flux line lattices." EPL (Europhysics Letters) 82, no. 4 (2008): 47003. http://dx.doi.org/10.1209/0295-5075/82/47003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Emig, Thorsten, and Thomas Nattermann. "A New Disorder-Driven Roughening Transition of Charge-Density Waves and Flux-Line Lattices." Physical Review Letters 79, no. 25 (1997): 5090–93. http://dx.doi.org/10.1103/physrevlett.79.5090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dai, Hongjie, Jie Liu та Charles M. Lieber. "Surface pinning and grain boundary formation in magnetic flux-line lattices ofBi2Sr2CaCu2O8+δhigh-Tcsuperconductors". Physical Review Letters 72, № 5 (1994): 748–51. http://dx.doi.org/10.1103/physrevlett.72.748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Daniilidis, Nikolaos, Ivo Dimitrov, and Xinsheng Sean Ling. "Ewald construction and resolution function for rocking-curve small-angle neutron scattering experiments." Journal of Applied Crystallography 40, no. 5 (2007): 959–63. http://dx.doi.org/10.1107/s0021889807033377.

Full text
Abstract:
A geometrical Ewald construction for small-angle neutron scattering experiments from line-like objects with a preferential orientation of the lines, such as flux-line lattices in type-II superconductors, is described. The Ewald construction offers a straightforward way to interpret rocking-curve experiments. It allows calculation of the resolution function in rocking-curve measurements. The resolution function for a given instrumental geometry can be readily computed by performing two numerical integrations.
APA, Harvard, Vancouver, ISO, and other styles
18

Sudbø, A., and E. H. Brandt. "Nonlocal elastic properties of flux-line lattices in anisotropic superconductors in an arbitrarily oriented field." Physical Review B 43, no. 13 (1991): 10482–88. http://dx.doi.org/10.1103/physrevb.43.10482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhi-Xiong Cai, D. O. Welch, and G. S. Dubey. "Numerical simulations of elastic properties of flux-line lattices in high-T/sub c/ superconductors." IEEE Transactions on Appiled Superconductivity 9, no. 2 (1999): 2674–77. http://dx.doi.org/10.1109/77.785037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Baert, M., V. V. Metlushko, R. Jonckheere, V. V. Moshchalkov, and Y. Bruynseraede. "Composite Flux-Line Lattices Stabilized in Superconducting Films by a Regular Array of Artificial Defects." Physical Review Letters 74, no. 16 (1995): 3269–72. http://dx.doi.org/10.1103/physrevlett.74.3269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Marchetti, M. Cristina, and Leo Radzihovsky. "Interstitials, vacancies, and dislocations in flux-line lattices: A theory of vortex crystals, supersolids, and liquids." Physical Review B 59, no. 18 (1999): 12001–20. http://dx.doi.org/10.1103/physrevb.59.12001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aoki, Hideo, Takahiro Fukui, and Yasuhiro Hatsugai. "Topological Aspects of Quantum Hall Effect in Graphene." International Journal of Modern Physics B 21, no. 08n09 (2007): 1133–39. http://dx.doi.org/10.1142/s0217979207042562.

Full text
Abstract:
We study the recently observed quantum Hall effect (QHE) in graphene from a theoretical viewpoint of topological nature of the QHE to pose questions: (i) The zero-mass Dirac dispersion, which is the origin of the anomalous QHE, exists only around the zero gap, so a natural question is what happens to the QHE topological numbers over the entire energy spectrum. (ii) How the property that the bulk QHE topological number is equal to the edge QHE topological number, shown for the ordinary QHE, applies to the honeycomb lattice. We have shown that (a) the anomalous QHE ∝ (2N + 1) persists, surprisin
APA, Harvard, Vancouver, ISO, and other styles
23

Brandt, E. H. "Magnetic field density of perfect and imperfect flux line lattices in type II superconductors. I. Application of periodic solutions." Journal of Low Temperature Physics 73, no. 5-6 (1988): 355–90. http://dx.doi.org/10.1007/bf00683568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Treumann, R. A., W. Baumjohann, and W. D. Gonzalez. "Collisionless reconnection: magnetic field line interaction." Annales Geophysicae 30, no. 10 (2012): 1515–28. http://dx.doi.org/10.5194/angeo-30-1515-2012.

Full text
Abstract:
Abstract. Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two
APA, Harvard, Vancouver, ISO, and other styles
25

VIJAYARAGHAVAN, R., and L. C. GUPTA. "MAGNETIC AND SUPERCONDUCTING PROPERTIES OF HIGH-Tc SUPERCONDUCTORS." International Journal of Modern Physics B 09, no. 06 (1995): 633–77. http://dx.doi.org/10.1142/s0217979295000240.

Full text
Abstract:
High-Tc superconductors, distorted-perovskite cuprates, are derived, by means of suitable doping, from a Mott-insulating and antiferromagnetic parent material. The most important ingredient of their structure is the stacks of Cu-O planes which carry superconductivity. Magnetic, transport and other properties that characterize the supercon-ducting state are very unusual and highly anisotropic. Density of states at the Fermi level in these materials is rather small but Tc is very high (highest reported Tc~125 K). In the high-Tc systems that contain magnetic moment bearing rate earth (RE)-atoms,
APA, Harvard, Vancouver, ISO, and other styles
26

Kopelevich, Y., S. Moehlecke, and J. H. S. Torres. "Flux-line-lattice melting inBi2Sr2Ca2Cu3O10." Physical Review B 49, no. 2 (1994): 1495–98. http://dx.doi.org/10.1103/physrevb.49.1495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Brandt, E. H. "Does the flux-line lattice melt?" Physica B: Condensed Matter 165-166 (August 1990): 1129–30. http://dx.doi.org/10.1016/s0921-4526(09)80150-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ohira-Kawamura, Seiko, Hiroaki Shishido, Hazuki Kawano-Furukawa, et al. "Anomalous Flux Line Lattice in CeCoIn5." Journal of the Physical Society of Japan 77, no. 2 (2008): 023702. http://dx.doi.org/10.1143/jpsj.77.023702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kawano-Furukawa, Hazuki, Seiko Ohira-Kawamura, Hitomi Tsukagoshi, et al. "Flux Line Lattice Structure in YNi2B2C." Journal of the Physical Society of Japan 77, no. 10 (2008): 104711. http://dx.doi.org/10.1143/jpsj.77.104711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jackson, D. J. C., and M. P. Das. "Melting of the flux line lattice." Superconductor Science and Technology 9, no. 9 (1996): 713–27. http://dx.doi.org/10.1088/0953-2048/9/9/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Brandt, E. H. "The flux-line lattice in superconductors." Reports on Progress in Physics 58, no. 11 (1995): 1465–594. http://dx.doi.org/10.1088/0034-4885/58/11/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Glyde, H. R., L. K. Moleko, and P. Findeisen. "Flux-line-lattice stability and dynamics." Physical Review B 45, no. 5 (1992): 2409–16. http://dx.doi.org/10.1103/physrevb.45.2409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bhattacharya, S., and M. J. Higgins. "Dynamics of a disordered flux line lattice." Physical Review Letters 70, no. 17 (1993): 2617–20. http://dx.doi.org/10.1103/physrevlett.70.2617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Johnson, S. T., E. M. Forgan, S. H. Lloyd та ін. "Flux-Line Lattice Structures in UntwinnedYBa2Cu3O7−δ". Physical Review Letters 82, № 13 (1999): 2792–95. http://dx.doi.org/10.1103/physrevlett.82.2792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Takanaka, Kenji, and Tomitaro Nagashima. "Flux line lattice of superconducting uniaxial materials." Physica B: Condensed Matter 194-196 (February 1994): 1447–48. http://dx.doi.org/10.1016/0921-4526(94)91223-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Forgan, E. M., DMcK Paul, H. A. Mook, et al. "Neutron diffraction from the flux line lattice." Physica C: Superconductivity 185-189 (December 1991): 247–52. http://dx.doi.org/10.1016/0921-4534(91)91980-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Marley, A. C., M. J. Higgins, and S. Bhattacharya. "Flux Flow Noise and Dynamical Transitions in a Flux Line Lattice." Physical Review Letters 74, no. 15 (1995): 3029–32. http://dx.doi.org/10.1103/physrevlett.74.3029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Brandt, E. H., and U. Essmann. "The Flux-Line Lattice in Type-II Superconductors." physica status solidi (b) 144, no. 1 (1987): 13–38. http://dx.doi.org/10.1002/pssb.2221440103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dobrosavljević, L., and H. Raffy. "Flux Line Lattice in Anisotropic Type II Superconductors." physica status solidi (b) 64, no. 1 (2006): 229–36. http://dx.doi.org/10.1002/pssb.2220640127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Henderson, W., E. Y. Andrei, M. J. Higgins, and S. Bhattacharya. "ac Dynamics of a Pinned Flux-Line Lattice." Physical Review Letters 80, no. 2 (1998): 381–84. http://dx.doi.org/10.1103/physrevlett.80.381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hampshire, Damian P. "The non-hexagonal flux-line lattice in superconductors." Journal of Physics: Condensed Matter 13, no. 27 (2001): 6095–113. http://dx.doi.org/10.1088/0953-8984/13/27/304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ortalano, Michael W., and Henry R. Glyde. "Flux Line Lattice melting and the Lindemann ratio." Physica B: Condensed Matter 194-196 (February 1994): 2223–24. http://dx.doi.org/10.1016/0921-4526(94)91611-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Paul, Don McK, E. M. Forgan, R. Cubitt, S. L. Lee, M. Yethiraj, and H. A. Mook. "The flux-line lattice in high-temperature superconductors." Physica B: Condensed Matter 192, no. 1-2 (1993): 70–78. http://dx.doi.org/10.1016/0921-4526(93)90109-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Brandt, Ernst Helmut. "The flux line lattice in high Tc superconductors." Journal of Alloys and Compounds 181, no. 1-2 (1992): 339–56. http://dx.doi.org/10.1016/0925-8388(92)90331-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kadowaki, K., N. J. Li, F. R. de Boer, P. H. Frings, and J. J. M. Franse. "Flux-line lattice dynamics and irreversibility line in single crystalline Bi2Sr2CaCu2O8+ delta." Superconductor Science and Technology 4, no. 1S (1991): S88—S90. http://dx.doi.org/10.1088/0953-2048/4/1s/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Olive, Enrick, and Ernst Helmut Brandt. "Point defects in the flux-line lattice of superconductors." Physical Review B 57, no. 21 (1998): 13861–71. http://dx.doi.org/10.1103/physrevb.57.13861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sarkar, S., S. S. Banerjee, A. K. Grover, et al. "Elucidation of amorphization of flux line lattice in Yb3Rh4Sn13." Physica C: Superconductivity 341-348 (November 2000): 1055–56. http://dx.doi.org/10.1016/s0921-4534(00)00780-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pan, A. V., P. Esquinazi, and M. Lorenz. "Thermally Activated Depinning of a Driven Flux Line Lattice." physica status solidi (b) 215, no. 1 (1999): 573–78. http://dx.doi.org/10.1002/(sici)1521-3951(199909)215:1<573::aid-pssb573>3.0.co;2-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ryu, Seungoh, A. Kapitulnik, and S. Doniach. "Field-DrivenTopologicalGlass Transition in a Model Flux Line Lattice." Physical Review Letters 77, no. 11 (1996): 2300–2303. http://dx.doi.org/10.1103/physrevlett.77.2300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ohishi, Kazuki, Yasuyuki Ishii, Isao Watanabe, et al. "Flux-line lattice state in FeAs-based superconductor KFe2As2." Journal of Physics: Conference Series 400, no. 2 (2012): 022087. http://dx.doi.org/10.1088/1742-6596/400/2/022087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!