Academic literature on the topic 'Flying-capacitor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flying-capacitor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flying-capacitor"
Kawa, Adam, and Robert Stala. "The flying-capacitor SEPIC converter with the balancing circuit." Archives of Electrical Engineering 65, no. 3 (September 1, 2016): 411–24. http://dx.doi.org/10.1515/aee-2016-0030.
Full textAfsharikhamaneh, Masoud, Mostafa Abarzadeh, Jaber Ebrahimi, Tina Sojoudi, and Payam Farhadi. "Structure for double flying capacitor multicell converter; progressive double flying capacitor multicell converter." IET Power Electronics 8, no. 2 (February 2015): 297–308. http://dx.doi.org/10.1049/iet-pel.2014.0199.
Full textGülpınar, Feyzullah, Filiz Sarı, and Yunus Uzun. "Analysis of a Novel Four Level Flying Capacitor H – Bridge Converter." International Journal of Renewable Energy Development 7, no. 1 (February 18, 2018): 71. http://dx.doi.org/10.14710/ijred.7.1.71-75.
Full textGraziani, Santino F., Thomas V. Cook, and Brandon M. Grainger. "Isolated Flying Capacitor Multilevel Converters." IEEE Open Journal of Power Electronics 3 (2022): 197–208. http://dx.doi.org/10.1109/ojpel.2022.3160049.
Full textChoi, Nam-Sup, Kyoung-Min Kim, and Buhm Lee. "A Study on the Flying Capacitor Initial Charging Method in Multilevel Flying Capacitor Converters." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 36, no. 9 (September 30, 2022): 49–55. http://dx.doi.org/10.5207/jieie.2022.36.9.049.
Full textBanaei, M. R., and M. Toupchi Khosroshahi. "Novel Cell Flying Capacitor Converter Topology with Significant Reduction in Number of Components." International Journal of Emerging Electric Power Systems 15, no. 4 (August 1, 2014): 411–18. http://dx.doi.org/10.1515/ijeeps-2013-0177.
Full textXu, L., and V. G. Agelidis. "Active capacitor voltage control of flying capacitor multilevel converters." IEE Proceedings - Electric Power Applications 151, no. 3 (2004): 313. http://dx.doi.org/10.1049/ip-epa:20031051.
Full textKhoshkbar Sadigh, Arash, Gevorg B. Gharehpetian, and Seyed Hossein Hosseini. "New method for estimating flying capacitor voltages in stacked multicell and flying capacitor multicell converters." Journal of Zhejiang University SCIENCE C 11, no. 8 (July 31, 2010): 654–62. http://dx.doi.org/10.1631/jzus.c0910559.
Full textDung Le, Duc, and Dong-Choon Lee. "Reduction of Half-Arm Current Stresses and Flying-Capacitor Voltage Ripples of Flying-Capacitor MMCs." IEEE Access 8 (2020): 180076–86. http://dx.doi.org/10.1109/access.2020.3027844.
Full textAntoniewicz, K., and K. Rafal. "Model predictive current control method for four-leg three-level converter operating as shunt active power filter and grid connected inverter." Bulletin of the Polish Academy of Sciences Technical Sciences 65, no. 5 (October 1, 2017): 601–7. http://dx.doi.org/10.1515/bpasts-2017-0065.
Full textDissertations / Theses on the topic "Flying-capacitor"
Watkins, Stephen James. "Optimal control of multilevel flying-capacitor converters." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424230.
Full textHansmann, Chirstine Henriette. "Active capacitor voltage stabilisation in a medium-voltage flying-capacitor multilevel active filter." Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/1762.
Full textA switching state substitution must be developed that will make use of both single-phase redundancies and three-phase redundancies in the flying-capacitor topology. Losses should be taken into consideration and the algorithm must be designed for implementation on the existing PEC33 system, with on-board DSP (TMS320VC33) and FPGA (EP1K50QC208). The specific power-electronics application is a medium-voltage active filter. Existing capacitor voltage stabilisation schemes are investigated and a capacitor-voltage based algorithm is developed that is investigated in parallel with the Donzel and Bornard algorithm. Detailed simulation models are built for the evaluation of both existing and the proposed algorithm. Three-phase control is also evaluated. Timing analysis of the proposed algorithm shows that a DSP-only implementation of the proposed capacitor-based solution is not feasible. Detail design of the digital controller hereof is implemented in VHDL. Finally, a four-cell controller is fitted into the FPGA. A scalable hardware sorting architecture is utilised.
Yadhati, Vennela. "A comparative study of capacitor voltage balancing techniques for flying capacitor multi-level power electronic converters." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2010. http://scholarsmine.mst.edu/thesis/pdf/Yadhati_09007dcc807d2cc9.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed July 26, 2010) Includes bibliographical references (p. 96-102).
Oghorada, Oghenewvogaga. "Modular multilevel cascaded flying capacitor STATCOM for balanced and unbalanced load compensation." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18372/.
Full textNwobu, Chigozie John. "Control of a modular multilevel flying capacitor based STATCOM for distribution systems." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/15429/.
Full textWaite, Michael James. "Active power filter for unbalanced distribution networks using a flying-capacitor multi-level inverter." Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549738.
Full textEfika, Ikenna Bruce. "A multi-level multi-modular flying capacitor voltage source converter for high power applications." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/12154/.
Full textDu, Toit Daniel Josias. "Predictive control of a series-input, parallel-output, back-to-back, flying-capacitor multilevel converter." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18087.
Full textENGLISH ABSTRACT: This thesis investigates the viability of constructing a solid-state transformer (SST) with a series-input, parallel-output connection of full-bridge, three-level ying-capacitor converters. It focusses on the active recti er front-end of the SST which is used to control the input current to be sinusoidal and in-phase with the sinusoidal input voltage. A stack of two converters are built and tested. The input current, as well as the ying capacitor voltages of the two active recti ers in the stack, are actively controlled by a nite-state model-based predictive (FS-MPC) controller. The use of multiple ying-capacitor converters poses a problem when using FS-MPC because of the large number of possible switching states to include in the prediction equations. Three FS-MPC control algorithms are proposed to attempt to overcome the problem associated with the large number of switching states. They are implemented on an FPGA digital controller. The algorithms are compared on the bases of voltage and current errors, as well as their responses to disturbances that are introduced into the system. The simulation and experimental results that are presented shows that by interleaving the control actions for the two converters, one can obtain fast and robust responses of the controlled variables. The viability of extending the interleaving control algorithm beyond two converters is also motivated.
AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die moontlikheid van volbrug, drievlak vlieënde-kapasitoromsetters wat gebruik word om 'n serie-intree, parallel-uittree drywingselektroniese transformator (DET) te bou. Dit fokus op die aktiewe gelykrigter van die DET wat gebruik word om die intreestroom te beheer om sinusvormig en in fase met die sinusvormige intreespanning te wees. 'n Stapel van twee omsetters word gebou en getoets. Die intreestroom, sowel as die vlieënde kapasitorspannings van die twee aktiewe gelykrigters in die stapel, word aktief beheer met behulp van 'n eindige-toestand, model-gebaseerde voorspellende beheerder (ET-MVB). Die gebruik van veelvuldige vlieënde-kapasitoromsetters bemoeilik die implementering van 'n ET-MVB-beheerder as gevolg van die groot aantal skakeltoestande wat in die voorspellende vergelykings in ag geneem moet word. Drie ET-MVB-algoritmes word voorgestel om te poog om die probleme, wat met die groot aantal skakeltoestande geassosieer word, te oorkom. Die algoritmes word in 'n FPGA digitale verwerker geïmplementeer. Die algoritmes word vergelyk op grond van hul stroom- en spanningsfoute, asook hul reaksie op steurings wat op die stelsel ingevoer word. Die simulasie en praktiese resultate toon dat, deur die beheeraksies vir die twee omsetters te laat oorvleuel, die gedrag van die beheerde veranderlikes vinniger en meer robuust is. Die moontlikheid om die oorvleuelende beheeraksies uit te brei tot meer as twee omsetters word ook gemotiveer.
Song, Byeong-Mun. "Voltage Balancing Techniques for Flying Capacitors Used in Soft-Switching Multilevel Active Power Filters." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/30026.
Full textPh. D.
Joca, Davi Rabelo. "TÃcnica de ModulaÃÃo para ReduÃÃo de DHT em Inversor MultinÃvel com Capacitor Flutuante de TrÃs NÃveis." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11222.
Full textDiante da necessidade em aperfeiÃoar as tecnologias existentes para a conversÃo de energia elÃtrica em sistemas de alta potÃncia, este trabalho tem por finalidade projetar, analisar e implementar experimentalmente uma tÃcnica de modulaÃÃo com o intuito de reduzir o conteÃdo harmÃnico da tensÃo de saÃda em um inversor multinÃvel com capacitor flutuante de trÃs nÃveis. Algumas das diversas tÃcnicas de modulaÃÃo (PSPWM, LSPWM, HE-PWM e CSV-PWM) foram analisadas e implementadas no controlador digital FPGA a fim de comparar suas caracterÃsticas de desempenho com a tÃcnica de modulaÃÃo proposta. AlÃm disso, foi realizado o estudo de perdas da topologia de inversor multinÃvel com capacitor flutuante de trÃs nÃveis e a anÃlise teÃrica da distorÃÃo harmÃnica total da modulaÃÃo proposta. Finalmente, o desenvolvimento digital das tÃcnicas mostrou resultados coerentes, com formas de onda obtidas experimentalmente com alta qualidade de resoluÃÃo. A comparaÃÃo entre as estratÃgias de modulaÃÃo em termos de DHT resultou positivamente à modulaÃÃo proposta, cujos resultados experimentais de DHT nas tensÃes de linha na saÃda apresentaram o melhor desempenho para toda a faixa de Ãndices de modulaÃÃo comparadas Ãs tÃcnicas PSPWM, LSPWM-POD e CSV-PWM e uma reduÃÃo de atà 4,5% em relaÃÃo à HE-PWM. Isto comprova o estudo teÃrico realizado e sua aplicaÃÃo no inversor multinÃvel com capacitor flutuante de trÃs nÃveis.
Given the need to improve the existing technologies for electrical energy conversion into high power systems, this works purpose to design, analyze and implement a modulation technique that aims to reduce the output voltage harmonic content on the three-level flying capacitor multilevel inverter. Some of the various conventional modulation techniques (PSPWM, LSPWM, HE-PWM e CSV-PWM) have been analyzed and implemented in FPGA controller in order to compare their performance features with the proposed modulation technique. Furthermore, the losses study of the three-level flying capacitor multilevel inverter topology and the total harmonic distortion theoretical analysis of the proposed modulation technique have been made. Finally, the digital implementation of the techniques showed consistent results with experimentally obtained waveforms with high quality resolution. The comparison between the modulation strategies in the THD rates resulted positively for the proposed modulation, which THD experimental results in the line output voltage showed the best performance for all range of modulation indexes compared to techniques PSPWM, LSPWM-POD and CSV-PWM and the reduction of up to 4.5% better than HE-PWM. This proved the theoretical study done and its application in three-level flying capacitor multilevel inverter.
Book chapters on the topic "Flying-capacitor"
Ponnambalam, P., M. Praveen Kumar, V. Surendar, and G. Gokulakrishnan. "Fuzzy Controller for Flying Capacitor Multicell Inverter." In Advances in Intelligent Systems and Computing, 521–35. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0448-3_43.
Full textJday, Mariem, and Paul-Etienne Vidal. "Voltage Unbalance Compensation of Flying Capacitor Based on a Dynamic Pulse Width Modulation Applied to a Flying Capacitor Leg Inverter." In Lecture Notes in Electrical Engineering, 69–83. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24837-5_6.
Full textLim, Ziyou. "Three-Phase Seven-Level Three-Cell Lightweight Flying Capacitor Inverter." In Advanced Multilevel Converters and Applications in Grid Integration, 217–50. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119476030.ch12.
Full textLim, Ziyou. "Three-Phase Seven-Level Four-Cell Reduced Flying Capacitor Inverter." In Advanced Multilevel Converters and Applications in Grid Integration, 251–74. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119476030.ch13.
Full textPonnambalam, P., K. Aroul, P. Prasad Reddy, and K. Muralikumar. "Analysis of Fuzzy Controller for H-bridge Flying Capacitor Multilevel Converter." In Advances in Intelligent Systems and Computing, 307–17. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3322-3_29.
Full textPriya, M., Ponnambalam Pathipooranam, and K. Muralikumar. "THD Analysis of Flying-Capacitor Multilevel Converter Using Fuzzy Logic Controller." In Advances in Intelligent Systems and Computing, 105–17. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0035-0_9.
Full textJianlin, Li, Hu Shuju, Shao Guiping, Wu Xin, and Xu Honghua. "CPS-Spwm Flying Capacitor Converter Applicative Direct-Drive Wind Power Generator System." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 2297–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_464.
Full textRicco, Mattia, Manel Hammami, Riccardo Mandrioli, and Gabriele Grandi. "Ripple Correlation Control MPPT Scheme Applied to a Three-Phase Flying Capacitor PV System." In Lecture Notes in Electrical Engineering, 13–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56970-9_2.
Full textBadri, Yawar Irshad, Ikhlaq Hussain, Zaid Ahmad, Mustufa Usman, and Junaid Ali. "A New Modular Multilevel Converter Topology Using Flying Ultra-Capacitor and Cascaded H-bridges." In Lecture Notes in Electrical Engineering, 85–101. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1186-5_8.
Full textStyński, Sebastian, and Mariusz Malinowski. "Space Vector Modulation in Three-Phase Three-Level Flying Capacitor Converter-Fed Adjustable Speed Drive." In Advanced and Intelligent Control in Power Electronics and Drives, 335–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03401-0_10.
Full textConference papers on the topic "Flying-capacitor"
Li, Duo, Gianluca Roberts, and Aleksandar Prodic. "Exponential Flying Capacitor Converter." In 2022 IEEE 23rd Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, 2022. http://dx.doi.org/10.1109/compel53829.2022.9829950.
Full textKeyhani, Hamidreza, and Hamid A. Toliyat. "Flying-capacitor boost converter." In 2012 IEEE Applied Power Electronics Conference and Exposition - APEC 2012. IEEE, 2012. http://dx.doi.org/10.1109/apec.2012.6166145.
Full textAdam, G. P., Bader Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams. "New flying capacitor multilevel converter." In 2011 IEEE 20th International Symposium on Industrial Electronics (ISIE). IEEE, 2011. http://dx.doi.org/10.1109/isie.2011.5984181.
Full textRadan, A., and M. Samaram. "The ARCP flying capacitor inverter." In 2005 IEEE 11th European Conference on Power Electronics and Applications. IEEE, 2005. http://dx.doi.org/10.1109/epe.2005.219460.
Full textKusui, Rintaro, Keisuke Kusaka, and Jun-Ichi Itoh. "Flying-capacitor Linear Amplifier for Wireless Power Transfer Systems with Flying-capacitor Voltage Balancing." In 2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe). IEEE, 2021. http://dx.doi.org/10.23919/epe21ecceeurope50061.2021.9570546.
Full textShukla, Anshuman, Arindam Ghosh, and Avinash Joshi. "Capacitor Voltage Balancing Schemes in Flying Capacitor Multilevel Inverters." In 2007 IEEE Power Electronics Specialists Conference. IEEE, 2007. http://dx.doi.org/10.1109/pesc.2007.4342381.
Full textStillwell, Andrew, Enver Candan, and Robert C. N. Pilawa-Podgurski. "Constant Effective Duty Cycle Control for Flying Capacitor Balancing in flying Capacitor Multi-Level Converters." In 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, 2018. http://dx.doi.org/10.1109/compel.2018.8460000.
Full textRentmeister, Jan S., and Jason T. Stauth. "A 48V:2V flying capacitor multilevel converter using current-limit control for flying capacitor balance." In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2017. http://dx.doi.org/10.1109/apec.2017.7930719.
Full textCoday, Samantha, Nathan Ellis, Nicole Stokowski, and Robert C. N. Pilawa-Podgurski. "Design and Implementation of a (Flying) Flying Capacitor Multilevel Converter." In 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2022. http://dx.doi.org/10.1109/apec43599.2022.9773635.
Full textPan, Junliang, and Mingyu Wang. "A Flying-capacitor Modular Multilevel Converter." In 2018 IEEE 7th International Conference on Power and Energy (PECon). IEEE, 2018. http://dx.doi.org/10.1109/pecon.2018.8684129.
Full text