Academic literature on the topic 'FM spectroscopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'FM spectroscopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "FM spectroscopy"
Werle, P., and S. Lechner. "Stark-modulation-enhanced FM-spectroscopy." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 55, no. 10 (September 1999): 1941–55. http://dx.doi.org/10.1016/s1386-1425(99)00067-0.
Full textFischer, M. C., A. M. Dudarev, B. Gutiérrez-Medina, and M. G. Raizen. "FM spectroscopy in recoil-induced resonances." Journal of Optics B: Quantum and Semiclassical Optics 3, no. 4 (August 1, 2001): 279–87. http://dx.doi.org/10.1088/1464-4266/3/4/313.
Full textBitar, Khalil M., R. Edwards, U. M. Heller, A. D. Kennedy, Thomas A. DeGrand, Steven Gottlieb, A. Krasnitz, et al. "Hadronic spectroscopy at a ≈ 0.15 fm." Nuclear Physics B - Proceedings Supplements 20 (May 1991): 362–69. http://dx.doi.org/10.1016/0920-5632(91)90942-8.
Full textJung, Ye-Ha, Hyeonjin Kim, Dasom Lee, Jae-Yeon Lee, Won Joon Lee, Jee Youn Moon, Soo-Hee Choi, and Do-Hyung Kang. "Abnormal neurometabolites in fibromyalgia patients: Magnetic resonance spectroscopy study." Molecular Pain 17 (January 2021): 174480692199094. http://dx.doi.org/10.1177/1744806921990946.
Full textGentile, Eleonora, Katia Ricci, Marianna Delussi, Filippo Brighina, and Marina de Tommaso. "Motor Cortex Function in Fibromyalgia: A Study by Functional Near-Infrared Spectroscopy." Pain Research and Treatment 2019 (January 16, 2019): 1–7. http://dx.doi.org/10.1155/2019/2623161.
Full textSnadden, M. J., R. B. M. Clarke, and E. Riis. "FM spectroscopy in fluorescence in laser-cooled rubidium." Optics Communications 152, no. 4-6 (July 1998): 283–88. http://dx.doi.org/10.1016/s0030-4018(97)00709-8.
Full textChou, Nee-Yin, Glen W. Sachse, Liang-Guo Wang, and Thomas F. Gallagher. "Optical fringe reduction technique for FM laser spectroscopy." Applied Optics 28, no. 23 (December 1, 1989): 4973. http://dx.doi.org/10.1364/ao.28.004973.
Full textMondal, Sourav, M. Padmanath, and Nilmani Mathur. "Spectroscopy of Charmed and Bottom Hadrons using Lattice QCD." EPJ Web of Conferences 175 (2018): 05021. http://dx.doi.org/10.1051/epjconf/201817505021.
Full textGarwolińska, Dorota, Weronika Hewelt-Belka, Agata Kot-Wasik, and Ulrik Kræmer Sundekilde. "Nuclear Magnetic Resonance Metabolomics Reveals Qualitative and Quantitative Differences in the Composition of Human Breast Milk and Milk Formulas." Nutrients 12, no. 4 (March 27, 2020): 921. http://dx.doi.org/10.3390/nu12040921.
Full textNorth, Simon W., Ruian Fei, Trevor J. Sears, and Gregory E. Hall. "CN radical reaction rate measurements by time-resolved FM spectroscopy." International Journal of Chemical Kinetics 29, no. 2 (1997): 127–29. http://dx.doi.org/10.1002/(sici)1097-4601(1997)29:2<127::aid-kin6>3.0.co;2-w.
Full textDissertations / Theses on the topic "FM spectroscopy"
Usman, Irham Tri Muharram. "Investigating inhomogeneous FM at SC/FM interfaces using point-contact Andreev spectroscopy." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/12254.
Full textRůžička, Bohdan. "Normál vlnové délky pro optické komunikace v pásmu C." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-233431.
Full textRezynkina, Kseniia. "Structure des noyaux les plus lourds : spectroscopie du noyau ²⁵¹Fm et développement pour des traitements numériques du signal." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS344/document.
Full textOne of the major challenges of modern nuclear physics is to understand the nuclear structure of the heaviest elements. Fission barriers calculated within the macroscopic liquid drop model fail to explain the stability of nuclei with a number of protons Z≥90. Transfermium elements (Z≥100) have a vanishing liquid-drop barrier and are solely stabilized by quantum shell effects. They provide a unique laboratory to study the evolution of nuclear structure under the extreme conditions of large mass and strong Coulomb force. Though many theories agree on the existence of an “Island of Stability”, the predictions on its exact location in terms of number of protons and neutrons vary greatly. Hence the systematic study of transfermium nuclei is essential to constrain theoretical models and to get a better understanding of the evolution of nuclear shells.The interplay between single-particle and collective degrees of freedom in 251Fm was investigated by means combined internal conversion electron (ICE) and γ-ray spectroscopy. Excited states in 251Fm were populated via the α-decay of 255No produced in the two following fusion-evaporation reactions: 208Pb(48Ca, 1n)255No and 209Bi(48Ca, 2n)255Lr. The experiments were performed at the FLNR, JINR, Dubna. The intense beams were delivered by the U-400 cyclotron and the separators VASSILISSA or SHELS were used to select fusion evaporation residues. At their focal planes the GABRIELA spectrometer was used to perform a time and position correlated measurement of the characteristic decay properties to further isolate the nuclei of interest. ICE spectroscopy of 251Fm was performed for the first time. These measurements allowed to establish the multipolarities of several transitions in 251Fm and to quantify the M2/E3 mixing ratio in the decay of the low-lying 5/2+ isomer. The extracted B(E3) value is compared to those found in other members of the N=151 isotonic chain and to the QRPA calculations using the Gogny effective interaction.During this work, a novel graphical method of extracting mixing ratios for nuclear transitions has been developed. This intuitive and illustrative method and it’s limits of applicability, as well as certain aspects of the calculation of mixing ratios beyond these limits, are described and discussed.Double-sided silicon strip detectors (DSSD) are widely used in nuclear spectrometry, in particular at the focal plane of separators to detect the implantation and subsequent decay of the heaviest nuclei. It was found that the presence of mechanically disconnected strips on one face of the DSSD may lead to the occurrence of lower energy peaks on the opposite face due to the change of the total capacitance. This effect, along with the methods of restoring the correct spectra, has been studied and discussed. The use of GEANT4 simulations for resolving α-ICE summing in the DSSD and for constraining the internal conversion coefficients of the transitions involved in the decay of the nucleus of interest is presented with the example of 221Th.A significant part of the thesis work was dedicated to the R&D for a new digital electronics system for the GABRIELA spectrometer and to the comparative tests of several digital acquisition cards. The results of these tests, as well as the digital signal processing algorithms implemented for an unbiased off-line analysis are presented
Le, Sueur Hélène. "Développement d’un AFM-STM pour la spectroscopie électronique haute résolution de nanocircuits : application à l’effet de proximité supraconducteur." Paris 6, 2007. http://www.theses.fr/2007PA066236.
Full textLe, Sueur Hélène. "Un AFM-STM cryogénique pour la physique mésoscopique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00261434.
Full textAu cours de cette thèse, nous avons développé un microscope permettant d'effectuer la spectroscopie tunnel résolue spatialement (10 nm) de nanocircuits individuels, avec une résolution en énergie inégalée (10 µeV). Cet appareil combine les fonctions de Microscopie par Force Atomique (mode AFM) et de spectroscopie Tunnel locale (mode STM), et fonctionne à 30 mK. Dans le mode AFM, la topographie de l'échantillon est imagée grâce à un diapason en quartz piézoélectrique, ce qui permet de repérer les circuits. La spectroscopie tunnel peut ensuite être faite sur les zones conductrices.
Avec ce microscope, nous avons mesuré la DoS locale dans une structure hybride Supraconducteur-métal Normal-Supraconducteur (S-N-S). Dans un tel circuit, les propriétés électroniques de N et de S sont modifiées par l'effet de proximité supraconducteur. Notamment, pour des fils N courts, nous avons pu observer -comme prédit- la présence d'un gap dans sa DoS, indépendant de la position dans la structure : le “minigap”. De plus, en modulant la phase supraconductrice entre les deux S, nous avons mesuré la modification de ce gap, et sa disparition lorsque la différence de phase vaut π.
Nos résultats expérimentaux pour la DoS, ainsi que ses dépendances en phase, en position, et en longueur de N sont en accord quantitatif avec les prédictions de la théorie quasiclassique de la supraconductivité. Certaines de ces prédictions sont observées pour la première fois.
Ping-YenTsai and 蔡秉諺. "Simulation of the frequency-modulation (FM) saturation spectroscopy." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/15229528608872033264.
Full text國立成功大學
光電科學與工程學系
104
Compared to direct absorption spectroscopy and wavelength modulation spectroscopy, frequency modulation (FM) spectroscopy employs a higher sensitivity of probe beam and it can simultaneously detect the absorption and the dispersion of the interest gas. Therefore, FM spectroscopy is widely used in atomic and molecular spectroscopy and trace gas detection. On the other hand, FM spectroscopy also is the key technology in the high sensitivity noise immune cavity-enhanced optical heterodyne molecular spectroscopy. Consequently, due to the simple scheme and high sensitivity of FM spectroscopy, it gradually becomes one of popular measurement technology. In order to reduce the noise from the laser light, FM spectroscopy has a very high modulation frequency, which can let the sidebands move away from the center frequency of laser light by more than tens of MHz modulation frequency. It is also used in the molecular spectroscopy and the optical frequency stabilization. In this thesis, I derive the detailed derivation of the FM principle and use the Taylor series expansion to simplify the equation. Then I use MATLAB to simulate the absorption and the dispersion of FM signal by Lorentizan profile, and normalize the profile at different modulation frequency. Finally, in order to match our experiment for FM saturated spectroscopy. I propose a FM saturation absorption model to compare the experimental data of methane and simulate the case of H3+ by changing different parameters, such as homogenous linewidth, modulation frequency and modulation index.
Book chapters on the topic "FM spectroscopy"
Kim, Jungsang, Seema Somani, and Yoshihisa Yamamoto. "Sub-Shot-Noise FM Spectroscopy." In Nonclassical Light from Semiconductor Lasers and LEDs, 89–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56814-5_7.
Full textKim, Jungsang, Seema Somani, and Yoshihisa Yamamoto. "Sub-Shot-Noise FM Noise Spectroscopy." In Nonclassical Light from Semiconductor Lasers and LEDs, 107–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56814-5_8.
Full textBertinetto, F., G. B. Picotto, P. Cordiale, and S. Fontana. "He-Ne Laser at 612 nm Stabilized to 127I2 Using FM Spectroscopy." In Frequency Standards and Metrology, 465–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_100.
Full textWong, N. C., and J. L. Hall. "Servo Control of Amplitude Modulation in FM Spectroscopy: Shot-Noise Limited Measurement of Water Vapor Pressure-Broadening." In Springer Series in Optical Sciences, 393–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-540-39664-2_124.
Full textCrofton, M. W., and E. L. Petersen. "Application of the FM spectroscopic technique to SiH2 detection in a shock tube." In Shock Waves, 359–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6_52.
Full text"Frontmatter." In Vibrational Spectroscopy, I—IV. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110625097-fm.
Full text"Frontmatter." In Impedance Spectroscopy, I—IV. De Gruyter, 2018. http://dx.doi.org/10.1515/9783110558920-fm.
Full text"Frontmatter." In Micro-Raman Spectroscopy, I—IV. De Gruyter, 2020. http://dx.doi.org/10.1515/9783110515312-fm.
Full text"Frontmatter." In Operator Techniques in Atomic Spectroscopy, i—iv. Princeton University Press, 1998. http://dx.doi.org/10.1515/9781400864775.fm.
Full text"Frontmatter." In Progress Reports on Impedance Spectroscopy, I—IV. De Gruyter Oldenbourg, 2016. http://dx.doi.org/10.1515/9783110449822-fm.
Full textConference papers on the topic "FM spectroscopy"
Bomse, David. "High-Frequency Two-Tone FM Absorption Spectroscopy." In 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4909.
Full textGutmann, Zach, Trocia Clasp, Chris Lue, Tiffani Johnson, Taylor Ingle, Janet Jamison, Roger Buchanan, and Scott Reeve. "Quantum cascade laser FM spectroscopy of explosives." In SPIE Defense, Security, and Sensing, edited by Augustus W. Fountain. SPIE, 2013. http://dx.doi.org/10.1117/12.2015483.
Full textChow, Jong H., Ian C. M. Littler, David E. McClelland, and Malcolm B. Gray. "Quasi-static fiber strain sensing with FM spectroscopy." In 2008 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2008. http://dx.doi.org/10.1109/cleo.2008.4551321.
Full textSpindeldreier, Christian, Wolfgang Bartosch, Thijs Wendrich, Ernst M. Rasel, Holger Blume, and Wolfgang Ertmer. "FPGA based laser frequency stabilization using FM spectroscopy." In Laser Resonators, Microresonators, and Beam Control XX, edited by Alexis V. Kudryashov, Alan H. Paxton, and Vladimir S. Ilchenko. SPIE, 2018. http://dx.doi.org/10.1117/12.2288370.
Full textWynands, R. "Inversion of frequency modulation (FM) spectroscopy line shapes." In The 15th international conference on spectral line shapes. AIP, 2001. http://dx.doi.org/10.1063/1.1370635.
Full textRužička, Bohdan, Ondřej Číp, and Josef Lazar. "Near-IR laser frequency standard stabilized using FM-spectroscopy." In SPIE Proceedings, edited by Pavel Tománek, Miroslav Hrabovský, Miroslav Miler, and Dagmar Senderákova. SPIE, 2006. http://dx.doi.org/10.1117/12.675643.
Full textSvirikhin, A. I., A. V. Yeremin, M. L. Chelnokov, V. I. Chepigin, I. V. Izosimov, D. E. Katrasev, O. N. Malyshev, et al. "Neutron multiplicity at spontaneous fission of [sup 246]Fm." In 4TH INTERNATIONAL WORKSHOP ON NUCLEAR FISSION AND FISSION-PRODUCT SPECTROSCOPY. AIP, 2009. http://dx.doi.org/10.1063/1.3258259.
Full textLiu, Zheng, Zhao-Bin Chen, Song-Yuan Ding, Xiang Wang, Jing-Hua Tian, Yin Wu, Bing-Wei Mao, et al. "Fishing-Mode Tip-enhanced Raman Spectroscopy (FM-TERS) for Studying Single-Molecule Junctions." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482410.
Full textMohebati, Arman, and Terence A. King. "Fibre-Optic Remote Gas Sensor With Diode Laser FM Spectroscopy." In OE/FIBERS '89, edited by Robert A. Lieberman and Marek T. Wlodarczyk. SPIE, 1990. http://dx.doi.org/10.1117/12.963188.
Full textCarlisle, C. B., and D. E. Cooper. "Quantum-limited FM spectroscopy with a lead-salt diode laser." In ADVANCES IN LASER SCIENCE−IV. AIP, 1989. http://dx.doi.org/10.1063/1.38616.
Full textReports on the topic "FM spectroscopy"
Henderson, Kevin. FM Raman Spectroscopy Temperature Sensor. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1214633.
Full text