Academic literature on the topic 'Fonction de transfert de flamme'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fonction de transfert de flamme.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fonction de transfert de flamme"
Dechemi, N., and H. Chambaz. "La prévision des crues du bassin versant de l'Oued Dis (Sebaou) par la métode DPFT." Revue des sciences de l'eau 7, no. 4 (April 12, 2005): 331–42. http://dx.doi.org/10.7202/705204ar.
Full textTorero, J., T. Vietoris, G. Legros, and P. Joulain. "Évaluation d'un nombre de transfert de masse réel d'une flamme ascendante." Le Journal de Physique IV 11, PR6 (October 2001): Pr6–291—Pr6–300. http://dx.doi.org/10.1051/jp4:2001635.
Full textDesprairies, Armand. "Le transfert aux régions de la gestion des fonds structurels européens : un bilan en demi-teinte." Gestion & Finances Publiques, no. 3 (May 2020): 64–71. http://dx.doi.org/10.3166/gfp.2020.3.008.
Full textPrevot, Frédéric. "Le transfert inter-organisationnel de connaissances par les multinationales vers leurs fournisseurs locaux : une typologie des pratiques des firmes américaines au Brésil." Management international 15, no. 4 (October 19, 2011): 25–35. http://dx.doi.org/10.7202/1006189ar.
Full textT. hanly, Charles. "Réflexions sur la fonction contenante et le contre-transfert." Revue française de psychanalyse 58, no. 5 (1994): 1683. http://dx.doi.org/10.3917/rfp.g1994.58n5.1683.
Full textCudennec, C., M. Sarraza, and S. Nasri. "Modélisation robuste de l'impact agrégé de retenues collinaires sur l'hydrologie de surface." Revue des sciences de l'eau 17, no. 2 (April 12, 2005): 181–94. http://dx.doi.org/10.7202/705529ar.
Full textMoine, Olivier, and Denis-Didier Rousseau. "Mollusques terrestres et températures : une nouvelle fonction de transfert quantitative." Comptes Rendus Palevol 1, no. 3 (January 2002): 145–51. http://dx.doi.org/10.1016/s1631-0683(02)00022-2.
Full textGuigoures, Franck, Jean-Pierre Maye, and Jean-Philippe Garnier. "Modélisation thermique d'une interface solide–fluide par fonction de transfert." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329, no. 6 (June 2001): 425–28. http://dx.doi.org/10.1016/s1620-7742(01)01344-7.
Full textBoivin, Isabelle, Camille Brisset, and Yvan Leanza. "Interprétation et interprétariat : chassé-croisé en thérapies analytiques plurilingues." Filigrane 20, no. 2 (January 23, 2012): 107–22. http://dx.doi.org/10.7202/1007614ar.
Full textde Bonville, Jean. "Le spécialiste de la documentation et l’Année mondiale des communications." Documentation et bibliothèques 29, no. 3 (November 7, 2018): 93–97. http://dx.doi.org/10.7202/1053619ar.
Full textDissertations / Theses on the topic "Fonction de transfert de flamme"
Palies, Paul. "Dynamique et instabilités de combustion des flammes swirlées." Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00545421.
Full textSengissen, Aloïs. "Simulation aux grandes échelles des instabilités de combustion : vers le couplage fluide / structure." Phd thesis, Toulouse, INPT, 2006. http://oatao.univ-toulouse.fr/7428/1/sengissen1.pdf.
Full textGiauque, Alexis Poinsot Thierry. "Fonctions de transfert de flamme et énergies des pertubations dans les écoulements réactifs." Toulouse : INP Toulouse, 2007. http://ethesis.inp-toulouse.fr/archive/00000523.
Full textGiauque, Alexis. "Fonctions de transfert de flamme et énergies des pertubations dans les écoulements réactifs." Toulouse, INPT, 2007. http://ethesis.inp-toulouse.fr/archive/00000523/.
Full textThe general objective of this thesis is to extend the understanding of combustion instabilities by testing models, physical concepts and numerical procedures, and by providing new numerical post-processing tools to do so. Flame Transfert Function (FTF) : four methods for the determination of Flame Transfer Functions (FTFs) in LES have been tested. A new method based on the forcing of the flame by a filtered white noise is used to obtain the FTF at all frequencies with only one unsteady LES. Disturbance Energies and Stability Criteria in reacting Flows : two stability criteria in reacting flows are derived. The first one extends the Rayleigh criterion by taking into account the influence of the heat flux fluctuation. The second criterion is nonlinear and is based on the analysis of the budjet of a newly derived nonlinear disturbance energy during a controled thermo-acoustic instability
Guyonne, Vincent. "Modèles mathématiques pour flammes sphériques." Bordeaux 1, 2007. http://www.theses.fr/2007BOR13440.
Full textBrebion, Maxence. "Joint numerical and experimental study of thermoacoustic instabilities." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/17840/1/Brebion_1.pdf.
Full textHermeth, Sébastian. "Mechanisms affecting the dynamic response of swirled flames in gas turbines." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0064/document.
Full textModern pollutant regulation have led to a trend towards lean combustion systems which are prone to thermo-acoustic instabilities. The ability of Large Eddy Simulation (LES) to handle complex industrial heavy-duty gas turbines is evidenced during this thesis work. First, LES is applied to an academic single burner in order to validate the modeling against measurements performed at TU Berlin and against OpenFoam LES simulations done at Siemens. The coupling between acoustic and combustion is modeled with the Flame Transfer Function (FTF) approach and swirl number fluctuations are identified changing the FTF amplitude response of the flame. Then, an industrial gas turbine is analyzed for two different burner geometries and operating conditions. The FTF is only slightly influenced for the two operating points but slight modifications of the swirler geometry do modify the characteristics of the FTF showing that a simple model taking only into account the flight time is not appropriate and additional mechanisms are at play. Those mechanisms are identified being the inlet velocity, the swirl and the inlet mixture fraction fluctuations. The latter is caused by two mechanisms: 1) the pulsating injected fuel flow rate and 2) the fluctuating trajectory of the fuel jets. Although the diagonal swirler is designed to provide good mixing, effects of mixing heterogeneities at the combustion chamber inlet occur. Mixture perturbations phase with velocity (and hence with swirl) fluctuations and combine with them to lead to different FTF results. Another FTF approach linking heat release to inlet velocity and mixture fraction fluctuation (MISO model) shows further to be a good solution for complex systems. A nonlinear analysis shows that the forcing amplitude not only leads to a saturation of the flame but also to changes of the delay response. Flame saturation is only true for the global FTF and the gain increases locally with increasing forcing amplitude. Both, the linear and the nonlinear flames, are not compact: flame regions located right next to each other exhibited significant differences in delay meaning that at the same instant certain parts of the flame damp the excitation while others feed it
Sensiau, Claude. "Simulations numériques des instabilités thermoacoustiques dans les chambres de combustion annulaires." Montpellier 2, 2008. http://www.theses.fr/2008MON20155.
Full textThermoacoustic instabilities are spontaneously excited by a feedback loop between an oscillatory combustion process and one of the natural acoustic modes of the combustor. This phenomenon causes loss of performance and severe damages to the engine. However, aeronautical engines or gaz turbines manufacturers often observe this kind of instabilities during the experiments. In this work we propose a methodology dedicated to the computation of thermoacoustic instabilities usable in an industrial context. The coupling between acoustics and combustion is accounted for thanks to a specific Helmholtz equation including a reacting flow term. Using a finite element approach leads to an algebraic non-linear eigenvalue problem with N dimensions (N the number of nodes in the mesh). A point fix algorithm mixed with subspace iterative methods (Arnoldi implemented in ARPACK or Jacobi-Davidson) permits to solve this problem efficiently. Because aeronautical combustors usually present an annular shape with 10 to 20 injectors located all over the circumference, a multi-referenced (n-tau) flame transfer function is proposed. This thermoacoustic model shows amplified or damped, standing or spinning azimuthal modes depending on the parameter tau. This methodology is integrated in the calculation chain QUIET (AVBP-N3S-NOZZLE-AVSP) and it is used to study thermoacoustic instabilities of the Turbomeca ARDIDEN engine. The results are shown to be in good accordance with large eddy simulations of the whole combustor
Simon, Pascal. "Modélisation et simulation des mécanismes de la combustion hybride dans un système propulsif." Poitiers, 1996. http://www.theses.fr/1996POIT2384.
Full textFourcaud-Trocmé, Nicolas. "Fonction de transfert neuronale en présence de bruit." Paris 6, 2003. http://www.theses.fr/2003PA066123.
Full textBook chapters on the topic "Fonction de transfert de flamme"
Erskine, Richard G., and Jean Razous. "Fonction psychologique, besoins relationnels et résolution du transfert. Psychothérapie d’une obsession." In Le rôle de la relation, 185–201. NORPPA, 2021. http://dx.doi.org/10.3917/norppa.harg.2021.01.0185.
Full text