Academic literature on the topic 'Fonction zeta'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fonction zeta.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fonction zeta"
Berthé, Valérie. "Fonction $\zeta$ de Carlitz et automates." Journal de Théorie des Nombres de Bordeaux 5, no. 1 (1993): 53–77. http://dx.doi.org/10.5802/jtnb.78.
Full textBourqui, David. "Fonction zeta des hauteurs des variétés toriques déployées dans le cas fonctionnel." Journal für die reine und angewandte Mathematik (Crelles Journal) 2003, no. 562 (January 9, 2003): 171–99. http://dx.doi.org/10.1515/crll.2003.072.
Full textRoynette, Bernard, and Marc Yor. "Couples de Wald indéfiniment divisibles. Exemples liés à la fonction gamma d'Euler et à la fonction zeta de Riemann." Annales de l’institut Fourier 55, no. 4 (2005): 1219–83. http://dx.doi.org/10.5802/aif.2125.
Full textJOUHET, FRÉDÉRIC, and ELIE MOSAKI. "IRRATIONALITÉ AUX ENTIERS IMPAIRS POSITIFS D'UN q-ANALOGUE DE LA FONCTION ZÊTA DE RIEMANN." International Journal of Number Theory 06, no. 05 (August 2010): 959–88. http://dx.doi.org/10.1142/s1793042110003332.
Full textDenef, J., and F. Loeser. "Caracteristiques D'Euler-Poincare, Fonctions Zeta Locales et Modifications Analytiques." Journal of the American Mathematical Society 5, no. 4 (October 1992): 705. http://dx.doi.org/10.2307/2152708.
Full textLi, Xian-Jin. "On the explicit formula related to Riemann's zeta-function." International Journal of Number Theory 11, no. 08 (November 5, 2015): 2451–86. http://dx.doi.org/10.1142/s1793042115501146.
Full textLaarabi, Saïd, Khalifa El Kinani, Aziz Ettouhami, and Mohammed Limouri. "Analyse spectrométrique, in vivo, de l'impédance électrique de la première feuille de maïs (Zea mays L.) en fonction des conditions hydriques du sol et de l'atmosphère." Comptes Rendus Biologies 328, no. 5 (May 2005): 493–503. http://dx.doi.org/10.1016/j.crvi.2005.02.006.
Full textTRAORÈ, Ibrahima Cheikhou, Nianguiri Moussa KONATE, Elhadji FAYE, Habibou Mbaye GUEYE, and Hamidou DIENG. "Collecte, tri et caractérisation des accessions de maïs (Zea mays L.) de décrue cultivées au niveau de la haute et moyenne vallée du fleuve Sénégal (cas de la Mauritanie)." Journal of Animal & Plant Sciences 42.3 (December 31, 2019): 7330–39. http://dx.doi.org/10.35759/janmplsci.v42-3.5.
Full textDubon, Eric. "Une note sur la densité des zéros des sommes partielles de la fonction zeta de Dedekind sur un corps quadratique." Canadian Mathematical Bulletin, May 24, 2021, 1–7. http://dx.doi.org/10.4153/s0008439521000357.
Full textSulzgruber, Robin, and Marko Thiel. "Type C parking functions and a zeta map." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (January 1, 2015). http://dx.doi.org/10.46298/dmtcs.2496.
Full textDissertations / Theses on the topic "Fonction zeta"
Henocq, Thierry. "Jacobienne et fonction Zeta des courbes algébriques. Décodage des codes géométriques." Toulouse 3, 1994. http://www.theses.fr/1994TOU30185.
Full textTollis, Emmanuel. "Calculs dans les corps de nombres : étude algorithmique de la fonction zeta de Dedekind." Bordeaux 1, 1996. http://www.theses.fr/1996BOR10507.
Full textBel, Pierre. "Fonction Zêta de Hurwitz p-adique et irrationalité." Bordeaux 1, 2008. http://www.theses.fr/2008BOR16023.
Full textSankari, Abdulnasser. "Rationalité de la fonction zéta d'un système sofique et extension du logiciel automate." Rouen, 1995. http://www.theses.fr/1995ROUES015.
Full textFischler, Stéphane. "Contributions à l'étude diophantienne des polylogarithmes et des groupes algébriques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00002988.
Full textCampesato, Jean-Baptiste. "Une fonction zêta motivique pour l'étude des singularités réelles." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4104/document.
Full textThe main purpose of this thesis is to study real singularities using arguments from motivic integration as initiated by S. Koike and A. Parusiński and then continued by G. Fichou. In order to classify real singularities, T.-C. Kuo introduced the blow-analytic equivalence which is an equivalence relation on real analytic germs without moduli for isolated singularities. This notion is closely related to the notion of arc-analytic maps introduced by K. Kurdyka, thus it is natural to adapt arguments from motivic integration to the study of the relation. The difficulty lies in finding efficient ways to prove that two germs are equivalent and in constructing invariants that distinguish germs which are not in the same class. We focus on the blow-Nash equivalence, a more algebraic notion which was introduced by G. Fichou. The first part of this thesis consists in an inverse theorem for blow-Nash maps. Under certain assumptions, this ensures that the inverse of a homeomorphism which is blow-Nash is also blow-Nash. Such maps are involved in the definition of the blow-Nash equivalence. In the second part, we associate a power series to an analytic germ, called the zeta function of the germ. This construction generalizes the zeta functions of Koike-Parusiński and Fichou. Furthermore, it admits a convolution formula while being an invariant for the blow-Nash equivalence
Dauguet, Simon. "Généralisations du critère d’indépendance linéaire de Nesterenko." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112085/document.
Full textThis Ph.D. thesis lies in the path opened by Apéry who proved the irrationality of ζ(3) andalready followed by Ball-Rivoal who proved that there are infinitely many odd integers at which Riemann zeta function takes irrational values. A fundamental tool in the proof of Ball-Rivoal is Nesterenko’s linear independence criterion. This criterion has been generalized by Fischler and Zudilin to use common divisors of the coefficients of linear forms, under some restrictive assumptions. Then Fischler gave another generalization for simultaneous approximations (instead of small Z-linear combinations).In this Ph.D. thesis, we improve this last result by greatly weakening the assumption on thedivisors. We prove also an analogous linear independence criterion in the spirit of Siegel. Inanother part joint with Zudilin, we construct simultaneous linear approximations to ζ(2) and ζ(3) using hypergeometric identitites. These linear approximations allow one to prove at thesame time the irrationality of ζ(2) and that of ζ(3). Then, using a criterion from the previouspart, we deduce a lower bound on Z-linear combinations of 1, ζ(2) and ζ(3), under somestrong divisibility hypotheses on the coefficients (so that the Q-linear independence of thesethree numbers still remains an open problem)
Ben, Yamin Rosen Barbara. "Fonction et régulation de l'ADN polymérase zêta au cours de la réplication de l'ADN : conséquences sur la stabilité du génome. DNA Polymerase Zeta Contributes to Heterochromatin Replication to Prevent Genome Instability." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS031.
Full textDNA replication is a fundamental process that ensures accurate duplication of the genetic information. Various perturbations can impede replication fork progression, and thus threatening genome integrity. To prevent fork collapse, replicative DNA polymerases can be replaced by error-prone DNA polymerases called translesion (TLS) polymerases, able to bypass DNA damage at the cost of increased mutations. Among TLS polymerases, Polζ is unique because inactivation of its catalytic subunit, REV3L, leads to embryonic lethality in mice underscoring its biological importance. However, little is known about its function and regulation in mammalian cells. We showed that loss of REV3L impairs S phase progression with a disruption of replication timing at specific genomic loci that replicate in mid-late S-phase, and this is associated with increased mutagenic events and aberrant epigenetic landscape. We also revealed that REV3L interacts with heterochromatin components and localizes in pericentromeric regions, suggesting that Polζ contributes to replicate heterochromatin regions to limit genome instability. In a second part, we discovered that REV3L protein is proteolytically processed by the endopeptidase TASP1 to generate two polypeptides that heterodimerize to form a stable complex that associates with REV7, likely representing the active complex of Polζ. We also found that REV3L is finely regulated in physiological conditions and after genotoxic stress at multiple levels: (1) transcriptionally, (2) proteolytically by TASP1 and (3) post-translationally by phosphorylation. Altogether these findings highlight a unique mechanism to control the function of an error-prone polymerase in mammalian cells. These data are particularly important given that Polζ is an important factor for tumor resistance to chemotherapeutic agents
Loeser, François. "Fonctions zeta locales d'igusa et singularites." Paris 7, 1988. http://www.theses.fr/1988PA077193.
Full textVelasquez, Castanon Oswaldo Balazard Michel. "Sur la répartition des zéros de certaines fonctions méromorphes liées à la fonction zêta de Riemann." S. l. : Bordeaux 1, 2008. http://ori-oai.u-bordeaux1.fr/pdf/2008/VELASQUEZ_OSWALDO_2008.pdf.
Full textBooks on the topic "Fonction zeta"
1972-, Rivoal T., ed. Hypergéométrie et fonction zêta de Riemann. Providence, RI: American Mathematical Society, 2007.
Find full textFonction Zêta des hauteurs des variétés toriques non déployées. Providence, R.I: American Mathematical Society, 2010.
Find full textBook chapters on the topic "Fonction zeta"
Ivić, Aleksandar. "La valeur moyenne de la fonction zeta de Riemann." In Séminaire de Théorie des Nombres, Paris, 1990–91, 115–25. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-4271-8_7.
Full textShimura, Goro. "Correspondances modulaires et les fonctions zeta de courbes algébriques." In Collected Papers, 63–90. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4612-2074-9_5.
Full textConference papers on the topic "Fonction zeta"
Poirier, A. "Séries universelles construites à l'aide de la fonction zeta de Riemann." In Proceedings of the 7th International ISAAC Congress. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814313179_0022.
Full text