Academic literature on the topic 'Fonctions L de Dirichlet'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fonctions L de Dirichlet.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fonctions L de Dirichlet"
Vignéras, Marie-France. "Moyennes Galoisiennes des Valeurs de Fonctions L." Canadian Journal of Mathematics 41, no. 1 (February 1, 1989): 1–13. http://dx.doi.org/10.4153/cjm-1989-001-x.
Full textLouboutin, Stéphane. "Quelques Formules Exactes Pour des Moyennes de Fonctions L de Dirichlet." Canadian Mathematical Bulletin 36, no. 2 (June 1, 1993): 190–96. http://dx.doi.org/10.4153/cmb-1993-028-8.
Full textBarrucand, Pierre, and Stéphane Louboutin. "Minoration au point des fonctions L attachées à des caractères de Dirichlet." Colloquium Mathematicum 65, no. 2 (1993): 301–6. http://dx.doi.org/10.4064/cm-65-2-301-306.
Full textLouboutin, Stéphane. "Corrections à: Quelques Formules Exactes Pour des Moyennes de Fonctions L de Dirichlet." Canadian Mathematical Bulletin 37, no. 1 (March 1, 1994): 89. http://dx.doi.org/10.4153/cmb-1994-013-0.
Full textBurnol, Jean-François. "Sur certains espaces de Hilbert de fonctions entières, liés à la transformation de Fourier et aux fonctions L de Dirichlet et de Riemann." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, no. 3 (August 2001): 201–6. http://dx.doi.org/10.1016/s0764-4442(01)02036-5.
Full textMinh, Hoang Ngoc. "Fonctions de Dirichlet d'ordre n et de paramètre t." Discrete Mathematics 180, no. 1-3 (February 1998): 221–41. http://dx.doi.org/10.1016/s0012-365x(97)00117-9.
Full textMichel, Philippe. "Sur les zéros de fonctions L sur les corps de fonctions." Mathematische Annalen 313, no. 2 (February 1, 1999): 359–70. http://dx.doi.org/10.1007/s002080050264.
Full textBogdan, Krzysztof, and Tomasz Jakubowski. "Problème de Dirichlet pour les fonctions \alpha -harmoniques sur les domaines coniques." Annales mathématiques Blaise Pascal 12, no. 2 (2005): 297–308. http://dx.doi.org/10.5802/ambp.208.
Full textBuchwalter, Henri. "Les fonctions de L�vy existent!" Mathematische Annalen 274, no. 1 (March 1986): 31–34. http://dx.doi.org/10.1007/bf01458015.
Full textKhan, Rizwanur, and Hieu Ngo. "Nonvanishing of Dirichlet L-functions." Algebra & Number Theory 10, no. 10 (December 9, 2016): 2081–91. http://dx.doi.org/10.2140/ant.2016.10.2081.
Full textDissertations / Theses on the topic "Fonctions L de Dirichlet"
Pestour, Michel. "Valeurs en s=1 de fonctions L de Dirichlet." Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10093.
Full textMunsch, Marc. "Moments des fonctions thêta." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4093/document.
Full textIn this thesis, we focus on the study of theta functions involved in the proof of the functional equation of Dirichlet L- functions. In particular, we adapt some results obtained for L-functions to the case of theta functions. S. Chowla conjectured that Dirichlet L- functions associated to primitive characters χ don’t vanish at the central point of their functional equation. In a similar way to Chowla’s conjecture, it is conjectured that theta functions don't vanish at the central point of their functional equation for each primitive character. With the aim of proving this conjecture for a lot of characters, we study moments of theta functions in various families. We concentrate on two important families. The first one which we consider is the family of all Dirichlet characters modulo p where p is a prime number. In this case, we prove asymptotic formulae for the second and fourth moment of theta functions using diophantine techniques. The second family which we consider is the set of primitive quadratic characters associated to a fundamental discriminant less than a fixed bound. We give an asymptotic formula for the first moment and an upper bound for the second moment using techniques of Mellin transforms and estimation of character sums. In both cases, we deduce some results of non-vanishing. We also give an algorithm which, in practice, works well for a lot of characters to prove the non-vanishing of theta functions on the positive real axis. In this case, this implies in particular that the associated L-functions don’t vanish on the same axis
kadiri, habiba. "Une région explicite sans zéro pour les fonctions L de Dirichlet." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2002. http://tel.archives-ouvertes.fr/tel-00002695.
Full textKadiri, Habiba. "Une région explicite sans zéro pour les fonctions L de Dirichlet." Lille 1, 2002. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2002/50376-2002-279-280.pdf.
Full textKadiri, Habiba Queffélec Hervé Ramaré Olivier. "Une région explicite sans zéro pour les fonctions L de Dirichlet." [S.l.] : [s.n.], 2002. https://iris.univ-lille1.fr/dspace.
Full textVanlalngaia, Ramdinmawia. "Fonctions de Hardy des séries L et sommes de Mertens explicites." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10058/document.
Full textThis thesis consists of two parts. First of all, we study the Hardy function Z(t,\chi) associated to the Dirichlet L-function L(s,\chi). This real-valued function has the same zeros as L(s,\chi) on the critical line. We look at its primitive F(T,\chi)=\int_{0}^{T} Z(t,\chi) dt. In the case of the Riemann zeta function, Ivic (2004) showed the bound F(T)=O(T^{\frac{1}{4}+\epsilon} and conjectured that F(T)=\Omega_{\pm} T^{\frac{1}{4}. This last conjecture was proved by Korolëv (2007) and in a more precise way by Jutila (2011). These two authors also proved a surprising behaviour of F(T). Jutila proves an Atkinson-like formula for F(T) and deduces the results of Korolëv. Jutila's proof requires significant adaptations but we succeed to extend these results to a large class of Dirichlet L-functions. We also show that the behaviour of F(T,\chi) depends notably on the parity of \chi and of the conductor. The asymptotic models pose many arithmetical questions. In the second part, we study some summatory functions of primes in view of explicit estimates in the line of Rosser and Shoenfeld (1962). We give explicit estimates for the Mertens sums \sum_{p\leq x} 1/p, \sum_{p\leq x} \log p/p, \sum_{n\leq x} \Lambda(n)/n and the Euler products \prod_{p\leq x} (1+z/p); very precise explicit estimates are given by means of a zero-free region for the Riemann zeta function. The method used is suggested by a recent article of Ramaré (Acta Arith., 2014)
Mehrabdollahei, Mahya. "La mesure de Mahler d’une famille de polynômes exacts." Thesis, Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS170.pdf.
Full textIn this thesis we investigate the sequence of Mahler measures of a family of bivariate regular exact polynomials, called Pd := P0≤i+j≤d xiyj , unbounded in both degree and the genus of the algebraic curve. We obtain a closed formula for the Mahler measure of Pd in termsof special values of the Bloch–Wigner dilogarithm. We approximate m(Pd), for 1 ≤ d ≤ 1000,with arbitrary precision using SageMath. Using 3 different methods we prove that the limitof the sequence of the Mahler measure of this family converges to 92π2 ζ(3). Moreover, we compute the asymptotic expansion of the Mahler measure of Pd which implies that the rate of the convergence is O(log dd2 ). We also prove a generalization of the theorem of the Boyd-Lawton which asserts that the multivariate Mahler measures can be approximated using the lower dimensional Mahler measures. Finally, we prove that the Mahler measure of Pd, for arbitrary d can be written as a linear combination of L-functions associated with an odd primitive Dirichlet character. In addition, we compute explicitly the representation of the Mahler measure of Pd in terms of L-functions, for 1 ≤ d ≤ 6
Balčiūnas, Aidas. "Mellin transforms of Dirichlet L-functions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141209_112534-52265.
Full textDisertacijoje gauta modifikuotosios Melino transformacijos L- funkcijai meromorfinis pratęsimas į visą kompleksinę plokštumą.
Saldana, Amandine. "Séries de Dirichlet à deux variables et distribution des valeurs de fonctions arithmétiques." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10026/document.
Full textWe deal with two problems related to Dirichlet series. First we study the analytic continuation of a class of Dirichlet series with two variables: g(s_1,s_2,a,r) = sum_d=1 r(d) / a(d)s1ds2, where a(d) is a positive multiplicative function and r(d) is a multiplicative function. We prove, under suitable hypotheses, a general Theorem which allows us to approach this Dirichlet series by a known series, up to another series for which we get very precise upper bounds. Then we use this tool to get quantitative results on the distribution of values of arithmetical functions. Under suitable hypotheses on the functions a(d) and r(d), we determine lim_x?8 1/X sum_d
Amandine, Saldana. "Séries de Dirichlet à deux variables et distribution des valeurs de fonctions arithmétiques." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2009. http://tel.archives-ouvertes.fr/tel-00426287.
Full textBooks on the topic "Fonctions L de Dirichlet"
R, Balasubramanian. Zeros of Dirichlet L-functions. Toronto: Dept. of Mathematics, University of Toronto, 1989.
Find full textSolomon, Friedberg, Goldfeld Dorian, and SpringerLink (Online service), eds. Multiple Dirichlet Series, L-functions and Automorphic Forms. Boston: Birkhäuser Boston, 2012.
Find full textBump, Daniel, Solomon Friedberg, and Dorian Goldfeld, eds. Multiple Dirichlet Series, L-functions and Automorphic Forms. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8334-4.
Full textPerrin-Riou, Bernadette. Fonctions L p-adiques des représentations p-adiques. Paris: Société mathématique de France, 1995.
Find full textPerrin-Riou, Bernadette. Fonctions L p-adiques des représentations p-adiques. Paris: Société mathétique de France, 1995.
Find full textPerrin-Riou, Bernadette. Fonctions L p-adiques des représentations p-adiques. Paris: Société mathématique de France, 1995.
Find full textPerrin-Riou, Bernadette. Fonctions L p-adiques des représentations p-adiques. Paris: Société mathétique de France, 1995.
Find full textChabrowski, Jan. The Dirichlet problem with L²-boundary data for elliptic linear equations. Berlin: Springer-Verlag, 1991.
Find full textStarobinski, Georges. L' ostinato dans l'œuvre d'Alban Berg: Formes et fonctions. Bern: P. Lang, 2000.
Find full textLeduc, Fabrice. L' acte d'administration en droit privé: Nature et fonctions. Hellemmes [France]: Ester, 1992.
Find full textBook chapters on the topic "Fonctions L de Dirichlet"
Ireland, Kenneth, and Michael Rosen. "Dirichlet L-functions." In A Classical Introduction to Modern Number Theory, 249–68. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-2103-4_16.
Full textKaratsuba, Anatolij A., and Melvyn B. Nathanson. "Dirichlet L-Functions." In Basic Analytic Number Theory, 102–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-58018-5_8.
Full textMurty, M. Ram, and V. Kumar Murty. "Dirichlet L-Functions." In Non-vanishing of L-Functions and Applications, 93–132. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8956-8_6.
Full textPerrin-Riou, Bernadette. "Fonctions L p-adiques." In Proceedings of the International Congress of Mathematicians, 400–410. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9078-6_33.
Full textJacob, Niels, and René L. Schilling. "Extended L p Dirichlet Spaces." In International Mathematical Series, 221–38. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1341-8_9.
Full textMurty, M. Ram, and V. Kumar Murty. "Chapter 5 Dirichlet L-Functions." In Non-vanishing of L-Functions and Applications, 93–132. Basel: Springer Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-0274-1_6.
Full textBump, Daniel. "Introduction: Multiple Dirichlet Series." In Multiple Dirichlet Series, L-functions and Automorphic Forms, 1–36. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8334-4_1.
Full textLaurinčikas, Antanas. "Limit Theorems for Dirichlet L-Functions." In Limit Theorems for the Riemann Zeta-Function, 251–75. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2091-5_8.
Full textMurty, M. Ram, and V. Kumar Murty. "Modular Forms and Dirichlet Series." In Non-vanishing of L-Functions and Applications, 75–92. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8956-8_5.
Full textWashington, Lawrence C. "Dirichlet L-series and Class Number Formulas." In Graduate Texts in Mathematics, 30–46. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1934-7_4.
Full textConference papers on the topic "Fonctions L de Dirichlet"
Monte, M. "Usages littéraires de lapostrophe : fonctions textuelles et pragmatiques et spécificités génériques." In Congrès Mondial de Linguistique Française 2008. Les Ulis, France: EDP Sciences, 2008. http://dx.doi.org/10.1051/cmlf08073.
Full textYoussfi, Ahmed. "Existence and L∞-regularity results for some nonlinear elliptic Dirichlet problems." In Proceedings of the Conference in Mathematics and Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814295574_0007.
Full textLasiecka, I., and R. Triggiani. "Exponential uniform stabilization of the wave with equation with L2(o,∞ L2(t)) boundary feedback acting in the dirichlet boundary conditions." In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268531.
Full text