Dissertations / Theses on the topic 'Fonctions L de Dirichlet'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Fonctions L de Dirichlet.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Pestour, Michel. "Valeurs en s=1 de fonctions L de Dirichlet." Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10093.
Full textMunsch, Marc. "Moments des fonctions thêta." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4093/document.
Full textIn this thesis, we focus on the study of theta functions involved in the proof of the functional equation of Dirichlet L- functions. In particular, we adapt some results obtained for L-functions to the case of theta functions. S. Chowla conjectured that Dirichlet L- functions associated to primitive characters χ don’t vanish at the central point of their functional equation. In a similar way to Chowla’s conjecture, it is conjectured that theta functions don't vanish at the central point of their functional equation for each primitive character. With the aim of proving this conjecture for a lot of characters, we study moments of theta functions in various families. We concentrate on two important families. The first one which we consider is the family of all Dirichlet characters modulo p where p is a prime number. In this case, we prove asymptotic formulae for the second and fourth moment of theta functions using diophantine techniques. The second family which we consider is the set of primitive quadratic characters associated to a fundamental discriminant less than a fixed bound. We give an asymptotic formula for the first moment and an upper bound for the second moment using techniques of Mellin transforms and estimation of character sums. In both cases, we deduce some results of non-vanishing. We also give an algorithm which, in practice, works well for a lot of characters to prove the non-vanishing of theta functions on the positive real axis. In this case, this implies in particular that the associated L-functions don’t vanish on the same axis
kadiri, habiba. "Une région explicite sans zéro pour les fonctions L de Dirichlet." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2002. http://tel.archives-ouvertes.fr/tel-00002695.
Full textKadiri, Habiba. "Une région explicite sans zéro pour les fonctions L de Dirichlet." Lille 1, 2002. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2002/50376-2002-279-280.pdf.
Full textKadiri, Habiba Queffélec Hervé Ramaré Olivier. "Une région explicite sans zéro pour les fonctions L de Dirichlet." [S.l.] : [s.n.], 2002. https://iris.univ-lille1.fr/dspace.
Full textVanlalngaia, Ramdinmawia. "Fonctions de Hardy des séries L et sommes de Mertens explicites." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10058/document.
Full textThis thesis consists of two parts. First of all, we study the Hardy function Z(t,\chi) associated to the Dirichlet L-function L(s,\chi). This real-valued function has the same zeros as L(s,\chi) on the critical line. We look at its primitive F(T,\chi)=\int_{0}^{T} Z(t,\chi) dt. In the case of the Riemann zeta function, Ivic (2004) showed the bound F(T)=O(T^{\frac{1}{4}+\epsilon} and conjectured that F(T)=\Omega_{\pm} T^{\frac{1}{4}. This last conjecture was proved by Korolëv (2007) and in a more precise way by Jutila (2011). These two authors also proved a surprising behaviour of F(T). Jutila proves an Atkinson-like formula for F(T) and deduces the results of Korolëv. Jutila's proof requires significant adaptations but we succeed to extend these results to a large class of Dirichlet L-functions. We also show that the behaviour of F(T,\chi) depends notably on the parity of \chi and of the conductor. The asymptotic models pose many arithmetical questions. In the second part, we study some summatory functions of primes in view of explicit estimates in the line of Rosser and Shoenfeld (1962). We give explicit estimates for the Mertens sums \sum_{p\leq x} 1/p, \sum_{p\leq x} \log p/p, \sum_{n\leq x} \Lambda(n)/n and the Euler products \prod_{p\leq x} (1+z/p); very precise explicit estimates are given by means of a zero-free region for the Riemann zeta function. The method used is suggested by a recent article of Ramaré (Acta Arith., 2014)
Mehrabdollahei, Mahya. "La mesure de Mahler d’une famille de polynômes exacts." Thesis, Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS170.pdf.
Full textIn this thesis we investigate the sequence of Mahler measures of a family of bivariate regular exact polynomials, called Pd := P0≤i+j≤d xiyj , unbounded in both degree and the genus of the algebraic curve. We obtain a closed formula for the Mahler measure of Pd in termsof special values of the Bloch–Wigner dilogarithm. We approximate m(Pd), for 1 ≤ d ≤ 1000,with arbitrary precision using SageMath. Using 3 different methods we prove that the limitof the sequence of the Mahler measure of this family converges to 92π2 ζ(3). Moreover, we compute the asymptotic expansion of the Mahler measure of Pd which implies that the rate of the convergence is O(log dd2 ). We also prove a generalization of the theorem of the Boyd-Lawton which asserts that the multivariate Mahler measures can be approximated using the lower dimensional Mahler measures. Finally, we prove that the Mahler measure of Pd, for arbitrary d can be written as a linear combination of L-functions associated with an odd primitive Dirichlet character. In addition, we compute explicitly the representation of the Mahler measure of Pd in terms of L-functions, for 1 ≤ d ≤ 6
Balčiūnas, Aidas. "Mellin transforms of Dirichlet L-functions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141209_112534-52265.
Full textDisertacijoje gauta modifikuotosios Melino transformacijos L- funkcijai meromorfinis pratęsimas į visą kompleksinę plokštumą.
Saldana, Amandine. "Séries de Dirichlet à deux variables et distribution des valeurs de fonctions arithmétiques." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10026/document.
Full textWe deal with two problems related to Dirichlet series. First we study the analytic continuation of a class of Dirichlet series with two variables: g(s_1,s_2,a,r) = sum_d=1 r(d) / a(d)s1ds2, where a(d) is a positive multiplicative function and r(d) is a multiplicative function. We prove, under suitable hypotheses, a general Theorem which allows us to approach this Dirichlet series by a known series, up to another series for which we get very precise upper bounds. Then we use this tool to get quantitative results on the distribution of values of arithmetical functions. Under suitable hypotheses on the functions a(d) and r(d), we determine lim_x?8 1/X sum_d
Amandine, Saldana. "Séries de Dirichlet à deux variables et distribution des valeurs de fonctions arithmétiques." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2009. http://tel.archives-ouvertes.fr/tel-00426287.
Full textScalas, Florence. "Intégrales de Poisson associées aux opérateurs de Dunkl pour les groupes diédraux." Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11036.
Full textKalpokas, Justas. "Riemann'o dzeta funkcijos ir Dirichlet L-funkcijų diskretieji momentai." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121119_130735-21648.
Full textIn mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems that concern the integers. It is often said to have begun with Dirichlet's introduction of Dirichlet L-functions. In analytic number theory one of the main investigation objects is the Riemann zeta function. The Riemann hypothesis states that all non-trivial zeros of the Riemann zeta function lie on the critical line. In the thesis we investigate value distribution of the Riemann zeta function on the critical line. To do so we use the curve of the Riemann zeta function on the critical line. A problem connected to the curve asks the question whether the curve is dense in the complex plane. We prove that the curve expands to all directions on the complex plane. A separete case of the main result can be stated as follows Riemann zeta function has infinetly many negative values on the critical line and they are unbounded.
Ascione, Cristina. "Il problema di Dirichlet per l'operatore di Laplace." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5724/.
Full textMontay, Benoît. "Doctrine des fonctions de l’“Executif”." Thesis, Paris 2, 2017. http://www.theses.fr/2017PA020083.
Full textThe analysis of the legal functions of State, as it was developed from the seventeenth century, notably by Locke, has remained generally rather poor and has been subjected to tensions not likely to promote elucidation of the difficulties it raised, particularly in the early days of the French Revolution. The result was a veritable philosophico-juridical vulgate establishing three functions - legislative, jurisdictional, administrative - that do not fit very well with the diversity of the activities of the State, particularly the administrative or "executive" function conceived from an organic point of view as a residual category embracing all the legal acts and material acts of what can only be called "Executive" with the prudence of the quotation marks. The purpose of the thesis is therefore to offer a methodology that could be called "realistic" in order to construct a complete typology of the functions of the Executive by distinguishing the infinite ways of enacting a legal act or committing a material act. At the end of this typology, whose summa divisio opposes the internal functions to the international functions, it appears that this organ exercises or participates more or less in the whole of the activities of the State. From actions to functions and functions to essence, this thesis proposes finally to qualify the nature of an "Executive" which can not be reduced to a mere "power", in the sense in which one usually hears this term, but which is still and above all an "authority", which is now challenged
Le, Manach Florian. "Sur l’approximation et la complétude des translatés dans les espaces de fonctions." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0237/document.
Full textWe are interested in the study of cyclicity and bicyclicity in weighted $ell^p(Z)$ spaces and the study of cyclicity in Dirichlet spaces. While Wiener characterized the bicyclicity in $ell^1(Z)$ and $ell^2(Z)$, thanks to the zero set of the Fourier transform, Lev and Olevski have shown that this set cannot characterize bicyclicity in $ell^p(Z)$ when $1 < p < 2$ for sequences in $ell^1(Z)$. Also Beurling, Salem and Newman were interested in the bicyclicity in $ell^p(Z)$ when $1 < p < 2$. In this work, we first extend the results of Beurling, Salem and Newman to the weighted $ell^p(Z)$ spaces, by studying the Hausdorff dimension and the capacity of the zero set of the Fourier transform. Then we prove that the Lev-Olevskii result remains valid for cyclicity in $ell^p(Z)$, $1 < p < 2$. In addition, we give sufficient conditions for the cyclicity in the weighted $ell^p(Z)$ spaces. Finally, we prove that, for a function $f$ in the disk algebra and in a generalized Dirichlet space, if $f$ is outer and the zero set of $f$ is reduced to a point then $f$ is cyclic. This generalizes the result of Hedenmalm and Shields who have treated the case of the classical Dirichlet space
Scioletti, Francesca. "Il problema di Dirichlet." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Find full textKrust, Romain. "Le problème de Dirichlet pour l' équation des surfaces minimales." Paris 7, 2005. http://www.theses.fr/1992PA077323.
Full textAchab, Dehbia. "Fonctions zêta des représentations des algèbres de Jordan." Paris 6, 1993. http://www.theses.fr/1993PA066287.
Full textRecupero, Giuseppe Antonio. "Il Teorema di Dirichlet sui primi nelle progressioni aritmetiche." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17092/.
Full textMolin, Pascal. "Intégration numérique et calculs de fonctions L." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00537489.
Full textRoyer, Emmanuel. "Sur les fonctions L de formes modulaires." Phd thesis, Université Paris Sud - Paris XI, 2001. http://tel.archives-ouvertes.fr/tel-00001437.
Full textEuvrard, Charlotte. "Aspects explicites des fonctions L et applications." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2074/document.
Full textThis thesis focuses on L-functions, their explicit aspects and their applications.In the first chapter, we give a precise definition of L-functions and their main properties, especially about the invariants called local parameters. Then, we deal with Artin L-functions. For them, we have created a computer program in PARI/GP which gives the coefficients and the invariants for an Artin L-function above Q.In the second chapter, we make explicit a theorem of Henryk Iwaniec and Emmanuel Kowalski, which distinguishes between two L-functions by considering their local parameters for primes up to a theoretical bound.Actually, distinguishing between sums of local parameters of Artin L-functions is the same as separating the associated characters by the Frobenius automorphism. This is the subject of the third chapter, that can be related to Chebotarev Theorem. By applying the result to conjugate characters of the alternating group, we get a bound for a prime p giving the factorization modulo $p$ of a certain polynomial. This work has to be compared with a result from Joël Bellaïche (2013).Finally, we numerically illustrate our results by studying the evolution of the bound on polynomials X^n+uX+v, for n=5, 7 and 13
Caro, Daniel. "Fonctions L associées aux D-modules arithmétiques." Rennes 1, 2002. http://www.theses.fr/2002REN10038.
Full textColmez, Pierre. "Algébricité de valeurs spéciales de fonctions-L." Grenoble 1, 1988. http://www.theses.fr/1988GRE10097.
Full textColmez, Pierre. "Algébricité de valeurs spéciales de fonctions-L." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37612954g.
Full textKalpokas, Justas. "Discrete moments of the Riemann zeta function and Dirichlet L-functions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121119_130728-97328.
Full textAnalizinė skaičių teorija yra skaičių teorijos dalis, kuri, naudodama matematinės analizės ir kompleksinio kintamojo funkcijų tyrimo metodus, sprendžia uždavinius susijusius su sveikaisiais skaičiais. Manoma, kad analizinės skaičių teorijos pradžią žymi Dirichlet eilučių ir Dirichlet L-funkcijų taikymai. Vienas iš pagrindinių analizinės skaičių teorijos tyrimo objektų yra Riemann’o dzeta funkcija. Riemann’o hipotezė teigia, kad visi netrivialieji nuliai yra ant kritinės tiesės. Disertacijoje nagrinėjamas Riemann’o dzeta funckijos reikšmių pasiskirstymas ant kritinės tiesės. Tam pasitelkiama Riemann’o dzeta funkcijos kreivė. Svarbus klausimas susijęs su kreive yra ar ši kreivė yra visur tiršta kompleksinių skaičių plokštumoje. Disertacijoje įrodoma, kad kreivė plečiasi į visas puse kompleksinių skaičių plokštumoje. Atskiras disertacijos pagrindinio rezultato atvejis gali būti formuluojamas taip – Riemann’o dzeta funkcija ant kritinės tiesės įgyja be galo daug neigiamų reikšmių, kurios yra neaprėžtos.
Virtanen, Henri. "On the mean square of quadratic Dirichlet L-functions at 1 /." Helsinki : Suomalainen Tiedeakatemia, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=018603100&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textBelahdji, Kheira. "Problèmes elliptiques dans des domaines à points cuspides." Ecully, Ecole centrale de Lyon, 1996. http://www.theses.fr/1996ECDL0005.
Full textParisé, Pierre-Olivier. "Sommabilité du développement de Taylor dans les espaces de Banach de fonctions holomorphes." Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69670.
Full textKhazaei, Soleiman. "L'estimation bayésienne semi-paramétrique et non paramétrique de fonctions contraintes." Paris 9, 2011. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2011PA090069.
Full textMaciulevičienė, Irmutė. "Dvimatė ribinė teorema Dirichlė L-funkcijoms." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2006. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2006~D_20060605_123853-83240.
Full textTemplier, Nicolas. "Points spéciaux et valeurs spéciales de fonctions L." Montpellier 2, 2008. http://www.theses.fr/2008MON20056.
Full textThe central result of this thesis is a lower bound for the rank of the group of rational points on an elliptic curve that are defined over certain Hilbert class fields. We evaluate various asymptotics of moments of quadratic L-series. Several solutions are proposed: a geometric one (equirepartition of small points) and an analytic one (shifted convolution problem, sums of exponential sums) have been discovered. This work is in continuity with recent investigation concerning equirepartition, subconvexity and special values of automorphic L-functions
Alaya, Jilani. "Formule sommatoire liée à certaines fonctions L d'Artin." Paris 6, 1986. http://www.theses.fr/1986PA066041.
Full textEvangelista, Davide. "Teorema di Dirichlet sull'infinità dei numeri primi in particolari progressioni numeriche." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16430/.
Full textSaad, Eddin Sumaia. "On two problems concerning the Laurent-Stieltjes coefficients of Dirichlet L-series." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10032/document.
Full textIn this thesis, we give an upper bound for the Laurent- Stieltjes constants for the Dirichlet L- series in two different cases. These constants are the coefficients of the expansion in Laurent series of the Dirichlet L-series. This thesis is divided to three parts: [A] In the first part, we give an explicit upper bound for these constants when the Dirichlet character is fixed and its order goes to infinity, starting from an idea due to Matsuoka for the zeta function. We extend the formula of Matsuoka to the Dirichlet L functions, improving previous results. By using this result, we also deduce an approximation of the Dirichlet L-functions in the neighborhood of z=1 by a short Taylor polynomial. [B] The second part of this thesis deals more specifically with the first Laurent- Stieltjes coefficient. We gave an improvement of the known explicit upper bound due to Ramaré for this quantity in the case when the Dirichlet character is even and takes the value1 at 2 (This is the most difficult case). Thanks to this result, we deduce an upper bound for the class number of any real quadratic field, improving on a result by Le.[C] In the last part, we follow the method of Ramaré for giving an upper bound of the first Laurent Stieltjes coefficient but this time in the case when the conductor of the character is divisible by 3. This result is an improvement on a result of Louboutin
Rouymi, Djamel. "Formules de trace en niveau primaire et non annulation de valeurs centrales de fonctions L automorphes." Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10081/document.
Full textThe study of the analytical properties of the modular L-functions is a deep subject in number theory. Up to now, the properties have essentially been established in the case of prime or squarefree level. The aim of this thesis is to give the analytic properties in the arithmetically opposite case of prime power level. The family of L-functions under consideration is the one obtained when the valuation of the level is varying. In particular, we provide a trace formula that allows to compute the third moment of the central values of modular L-functions and to study the vanishing of these L values
Gruppioni, Sara. "Il problema di Dirichlet per il Laplaciano." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/4575/.
Full textRomito, Claudio. "Il problema di Dirichlet per le funzioni armoniche." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textShabankhah, Mahmood. "Integral means of the derivatives of Blaschke products and zero sequences for the Dirichlet space." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25900/25900.pdf.
Full textBourgade, Paul. "A propos des matrices aléatoires et des fonctions L." Phd thesis, Télécom ParisTech, 2009. http://tel.archives-ouvertes.fr/tel-00373735.
Full textBourgade, Paul. "À propos des matrices aléatoires et des fonctions L." Paris, ENST, 2009. http://tel.archives-ouvertes.fr/tel-00373735.
Full textA probabilistic view of the Keating Snaith conjecture, about the moments of the number theoretic L-functions, is given. Our method is also applied to models of particle systems with an asymetric repulsion. Finally, we give the mesoscopic fluctuations of the zeros of the Riemann zeta function, confirming the analogy with the statistics of eigenvalues of random matrices
Jory, Fabienne. "Familles de symboles modulaires et fonctions L p-adiques." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10254.
Full textPuydt, Julien. "Valeurs spéciales de fonctions L de formes modulaires adéliques." Université Joseph Fourier (Grenoble), 2003. http://www.theses.fr/2003GRE10217.
Full textMattioli, Federico. "Problema di Cauchy-Dirichlet per l'equazione del calore." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12042/.
Full textMinguez, Espallargas Alberto. "Correspondance de Howe l-modulaire : paires duales de type II." Paris 11, 2006. http://www.theses.fr/2006PA112229.
Full textJančiauskienė, Dovilija. "Dirichlė L funkcijų universalumas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140717_141132-95593.
Full textRussian mathematician S.M. Voronin proved, that any function can be approximated to the desired accuracy by one function in a specific sets in complex plane. But failed to theorem 1 analogue Dirichlet L-functions. The aim of this to provide a complete proof of the theorem.
Urfels, Florent. "Fonctions L p-adiques et variétés abéliennes à multiplication complexe." Université Louis Pasteur (Strasbourg) (1971-2008), 1998. http://www.theses.fr/1998STR13210.
Full textHorte, Stéphane. "Zéros exceptionnels des fonctions L p-adiques de Rankin-Selberg." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0155/document.
Full textThe aim of this thesis is to study the extra zeros of the p-adic L functions of Rankin-Selberg. In other words, for a couple of modular forms we study the zeros of the p-adic function interpolating the Rankin-Selberg L function associated to this couple. When the function has a zero we express the value of the derivate in terms of the L invariant, p-adic and infinite periods and the principal term of the complex Rankin-Selberg function
Blanc, Françoise. "Homogénisation et méthode de traitement asymptotique des singularités de frontière." Saint-Etienne, 1998. http://www.theses.fr/1998STET4001.
Full textCalado, Bruno. "Inégalité de Bohr pour les séries entières et les séries de Dirichlet et factorisation par convolution des fonctions continues périodiques." Paris 11, 2006. http://www.theses.fr/2006PA112332.
Full textIn this thesis, we study Bohr inequality for Taylor series of one or several variables and for Dirichlet series, and the convolution factorization problem for continuous periodic functions. In the first chapter, we state several results about Bohr inequality for power series of one or several variables and the proofs of these results, and we try to keep the chronological order as most as possible. In the second chapter, we extend to the setting of Dirichlet series previous results of H. Bohr for Taylor series in one variable and some generalizations studied in the first chapter. In the last chapter, we study the convolution factorization problem for continuous periodic functions. We study ‘’square'' factorization problems, but also ‘’rectangular'', and we notably show that these are very different problems