To see the other types of publications on this topic, follow the link: Fonctions L de Dirichlet.

Journal articles on the topic 'Fonctions L de Dirichlet'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fonctions L de Dirichlet.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Vignéras, Marie-France. "Moyennes Galoisiennes des Valeurs de Fonctions L." Canadian Journal of Mathematics 41, no. 1 (February 1, 1989): 1–13. http://dx.doi.org/10.4153/cjm-1989-001-x.

Full text
Abstract:
On se propose d'étendre un résultat de Rorhlich [5] concernant les moyennes galoisiennes des valeurs en s = 1 des fonctions L associées à une forme modulaire de poids 2, tordue par certains caractères de Dirichlet. On considérera une représentation automorphe parabolique π de GL(n), n≦2, sur un corps de nombres K, et l'on s'intéressera aux valeurs des fonctions L(S,πχ) et de leurs dérivées L(m)(s, πχ), m ≧1, où χ parcourt certains caractères de Hecke de K, d'ordre fini, et où s appartient à la bande a < Re s < 1 — a, où a mesure la déviation de n par rapport à la conjecture de Petersson généralisée.
APA, Harvard, Vancouver, ISO, and other styles
2

Louboutin, Stéphane. "Quelques Formules Exactes Pour des Moyennes de Fonctions L de Dirichlet." Canadian Mathematical Bulletin 36, no. 2 (June 1, 1993): 190–96. http://dx.doi.org/10.4153/cmb-1993-028-8.

Full text
Abstract:
RésuméNous donnons une expression finie pour la valeur L(1, X) dès lors que X est un caractère de Dirichlet modulo f ≥ 2, impair et non principal. Cette expression, valable même lorsque ce caractère n'est pas primitif, nous permet de généraliser au théorème 2 le résultat de H. Walum sur un comportement en moyenne de ces fonctions L (sa démonstration qui fait usage de sommes de Gauss ne semble pas pouvoir être adaptée au cas de caractères non primitifs.) Nous appliquons ces résultats à l'obtention de bornes pour le nombre de classes relatif des corps cyclotomiques: nous retrouvons celles de T. Metsänkylä et de K. Feng par une méthode nous permettant de les ensuite amender.
APA, Harvard, Vancouver, ISO, and other styles
3

Barrucand, Pierre, and Stéphane Louboutin. "Minoration au point des fonctions L attachées à des caractères de Dirichlet." Colloquium Mathematicum 65, no. 2 (1993): 301–6. http://dx.doi.org/10.4064/cm-65-2-301-306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Louboutin, Stéphane. "Corrections à: Quelques Formules Exactes Pour des Moyennes de Fonctions L de Dirichlet." Canadian Mathematical Bulletin 37, no. 1 (March 1, 1994): 89. http://dx.doi.org/10.4153/cmb-1994-013-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burnol, Jean-François. "Sur certains espaces de Hilbert de fonctions entières, liés à la transformation de Fourier et aux fonctions L de Dirichlet et de Riemann." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, no. 3 (August 2001): 201–6. http://dx.doi.org/10.1016/s0764-4442(01)02036-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Minh, Hoang Ngoc. "Fonctions de Dirichlet d'ordre n et de paramètre t." Discrete Mathematics 180, no. 1-3 (February 1998): 221–41. http://dx.doi.org/10.1016/s0012-365x(97)00117-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Michel, Philippe. "Sur les zéros de fonctions L sur les corps de fonctions." Mathematische Annalen 313, no. 2 (February 1, 1999): 359–70. http://dx.doi.org/10.1007/s002080050264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bogdan, Krzysztof, and Tomasz Jakubowski. "Problème de Dirichlet pour les fonctions \alpha -harmoniques sur les domaines coniques." Annales mathématiques Blaise Pascal 12, no. 2 (2005): 297–308. http://dx.doi.org/10.5802/ambp.208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Buchwalter, Henri. "Les fonctions de L�vy existent!" Mathematische Annalen 274, no. 1 (March 1986): 31–34. http://dx.doi.org/10.1007/bf01458015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khan, Rizwanur, and Hieu Ngo. "Nonvanishing of Dirichlet L-functions." Algebra & Number Theory 10, no. 10 (December 9, 2016): 2081–91. http://dx.doi.org/10.2140/ant.2016.10.2081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Balasubramanian, R., and V. Kumar Murty. "Zeros of Dirichlet $L$-functions." Annales scientifiques de l'École normale supérieure 25, no. 5 (1992): 567–615. http://dx.doi.org/10.24033/asens.1660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Garunkštis, R., J. Kalpokas, and J. Steuding. "Sum of the Dirichlet L-functions over nontrivial zeros of another Dirichlet L-function." Acta Mathematica Hungarica 128, no. 3 (June 4, 2010): 287–98. http://dx.doi.org/10.1007/s10474-009-9190-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rane, V. V. "Dirichlet expression for L(1, χ) with general Dirichlet character." Proceedings - Mathematical Sciences 120, no. 1 (February 2010): 7–9. http://dx.doi.org/10.1007/s12044-010-0003-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pestour, Michel. "Valeurs en s=1 de fonctions L." Acta Arithmetica 78, no. 4 (1997): 367–76. http://dx.doi.org/10.4064/aa-78-4-367-376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Soulé, Christophe. "Sur les zéros des fonctions L automorphes." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, no. 11 (June 1999): 955–58. http://dx.doi.org/10.1016/s0764-4442(99)80304-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

GARUNKŠTIS, RAMŪNAS, and JUSTAS KALPOKAS. "THE DISCRETE MEAN SQUARE OF THE DIRICHLET L-FUNCTION AT NONTRIVIAL ZEROS OF ANOTHER DIRICHLET L-FUNCTION." International Journal of Number Theory 09, no. 04 (May 7, 2013): 945–63. http://dx.doi.org/10.1142/s1793042113500085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Funakura, Takeo. "On Coefficients of Artin L Functions as Dirichlet Series." Canadian Mathematical Bulletin 33, no. 1 (March 1, 1990): 50–54. http://dx.doi.org/10.4153/cmb-1990-008-1.

Full text
Abstract:
AbstractThe paper is motivated by a result of Ankeny [1] above Dirichlet L functions in 1952. We generalize this from Dirichlet L functions to Artin L functions of relative abelian extensions, by complementing the ingenious proof of Ankeny's theorem given by Iwasaki [4]. Moreover, we characterize Dirichlet L functions in the class of all Artin L functions in terms of coefficients as Dirichlet series.
APA, Harvard, Vancouver, ISO, and other styles
18

Funakura, Takeo. "On characterization of Dirichlet L-functions." Acta Arithmetica 76, no. 4 (1996): 305–15. http://dx.doi.org/10.4064/aa-76-4-305-315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mittou, Brahim, and Abdallah Derbal. "Method for calculating Dirichlet L-functions." Mathematica Montisnigri 54 (2022): 51–58. http://dx.doi.org/10.20948/mathmontis-2022-54-5.

Full text
Abstract:
Recently, the authors gave asymptotic formulas for L(s, χ), which associated with a primitive Dirichlet character χ, in terms of the generalized Bernoulli numbers. In this paper, based on the aforementioned asymptotic formulas we describe a method for calculating Dirichlet L-functions that can be used to validate the generalized Riemann hypothesis up to a height T > 0. Our method is a refinement of the one presented by Davies and Haselgrove.
APA, Harvard, Vancouver, ISO, and other styles
20

Fujii, Akio. "Zeta zeros and Dirichlet $L$-functions." Proceedings of the Japan Academy, Series A, Mathematical Sciences 64, no. 6 (1988): 215–18. http://dx.doi.org/10.3792/pjaa.64.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hu, Pei-Chu, and Ai-Di Wu. "Zero distribution of Dirichlet L-functions." Annales Academiae Scientiarum Fennicae Mathematica 41 (2016): 775–88. http://dx.doi.org/10.5186/aasfm.2016.4152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Heath-Brown, D. R. "Fractional moments of Dirichlet L-functions." Acta Arithmetica 145, no. 4 (2010): 397–409. http://dx.doi.org/10.4064/aa145-4-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, Jae Moon. "Formal groups and dirichlet L-functions." Journal of Number Theory 37, no. 2 (February 1991): 161–67. http://dx.doi.org/10.1016/s0022-314x(05)80033-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Garunkštis, Ramūnas. "Self-approximation of Dirichlet L-functions." Journal of Number Theory 131, no. 7 (July 2011): 1286–95. http://dx.doi.org/10.1016/j.jnt.2011.01.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Eminyan, K. M. "?-Universality of the Dirichlet L-function." Mathematical Notes of the Academy of Sciences of the USSR 47, no. 6 (June 1990): 618–22. http://dx.doi.org/10.1007/bf01170896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Friedlander, J. B., and H. Iwaniec. "A note on Dirichlet L-functions." Expositiones Mathematicae 36, no. 3-4 (December 2018): 343–50. http://dx.doi.org/10.1016/j.exmath.2018.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dixit, Atul, Arindam Roy, and Alexandru Zaharescu. "Monotonicity results for Dirichlet L -functions." Journal of Mathematical Analysis and Applications 410, no. 1 (February 2014): 307–15. http://dx.doi.org/10.1016/j.jmaa.2013.08.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Peter, Manfred. "Mean values of Dirichlet L-series." Mathematische Annalen 318, no. 1 (September 1, 2000): 67–84. http://dx.doi.org/10.1007/s002080000109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Heim, Bernhard E. "Quotients of L-functions." Nagoya Mathematical Journal 160 (2000): 143–59. http://dx.doi.org/10.1017/s002776300000773x.

Full text
Abstract:
AbstractIn this paper a certain type of Dirichlet series, attached to a pair of Jacobi forms and Siegel modular forms is studied. It is shown that this series can be analyzed by a new variant of the Rankin-Selberg method. We prove that for eigenforms the Dirichlet series have an Euler product and we calculate all the local L-factors. Globally this Euler product is essentially the quotient of the standard L-functions of the involved Jacobi- and Siegel modular form.
APA, Harvard, Vancouver, ISO, and other styles
30

DJANKOVIĆ, GORAN. "THE RECIPROCITY LAW FOR THE TWISTED SECOND MOMENT OF DIRICHLET -FUNCTIONS OVER RATIONAL FUNCTION FIELDS." Bulletin of the Australian Mathematical Society 98, no. 3 (August 28, 2018): 383–88. http://dx.doi.org/10.1017/s0004972718000874.

Full text
Abstract:
We prove the reciprocity law for the twisted second moments of Dirichlet $L$-functions over rational function fields, corresponding to two irreducible polynomials. This formula is the analogue of the formulas for Dirichlet $L$-functions over $\mathbb{Q}$ obtained by Conrey [‘The mean-square of Dirichlet $L$-functions’, arXiv:0708.2699 [math.NT] (2007)] and Young [‘The reciprocity law for the twisted second moment of Dirichlet $L$-functions’, Forum Math. 23(6) (2011), 1323–1337].
APA, Harvard, Vancouver, ISO, and other styles
31

Mínguez, Alberto. "Fonctions zêta ℓ-modulaires." Nagoya Mathematical Journal 208 (December 2012): 39–65. http://dx.doi.org/10.1017/s0027763000010588.

Full text
Abstract:
AbstractLet F be a non-Archimedean locally compact field, of residual characteristic p, and let D be a finite-dimensional central division F-algebra. Let ℓ be a prime number different from p. In this article, generalizing the results of [GJ], we associate, to each ℓ-modular smooth irreducible representation π of GLm(D), two invariants L(T,π), ε(T,π,ψ), where T is an indeterminate and ψ is a nontrivial character of F.
APA, Harvard, Vancouver, ISO, and other styles
32

Royer, E. "Petits zéros de fonctions L de formes modulaires." Acta Arithmetica 99, no. 2 (2001): 147–72. http://dx.doi.org/10.4064/aa99-2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lafforgue, Vincent. "Valeurs spéciales des fonctions L en caractéristique p." Journal of Number Theory 129, no. 10 (October 2009): 2600–2634. http://dx.doi.org/10.1016/j.jnt.2009.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Cassou-Noguès, Philippe, and Martin J. Taylor. "Espaces homogènes principaux, unités elliptiques et fonctions $L $." Annales de l’institut Fourier 44, no. 3 (1994): 631–61. http://dx.doi.org/10.5802/aif.1413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mœglin, C. "Fonctions L de paires pour les groupes classiques." Ramanujan Journal 28, no. 2 (April 27, 2012): 187–209. http://dx.doi.org/10.1007/s11139-012-9372-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Katsurada, Masanori, and Kohji Matsumoto. "The mean values of Dirichlet L-functions at integer points and class numbers of cyclotomic fields." Nagoya Mathematical Journal 134 (June 1994): 151–72. http://dx.doi.org/10.1017/s0027763000004906.

Full text
Abstract:
Let q be a positive integer, and L(s, χ) the Dirichlet L-function corresponding to a Dirichlet character χ mod q. We putwhere χ runs over all Dirichlet characters mod q except for the principal character χ0.
APA, Harvard, Vancouver, ISO, and other styles
37

Van Order, Jeanine. "Dirichlet twists of GL n -automorphic L-functions and hyper-Kloosterman Dirichlet series." Annales de la Faculté des sciences de Toulouse : Mathématiques 30, no. 3 (October 26, 2021): 633–703. http://dx.doi.org/10.5802/afst.1687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

MOURTADA, M., and V. KUMAR MURTY. "OMEGA THEOREMS FOR $\frac{L'}{L}(1, \chi_D)$." International Journal of Number Theory 09, no. 03 (April 7, 2013): 561–81. http://dx.doi.org/10.1142/s1793042112501485.

Full text
Abstract:
A classical result of Chowla [Improvement of a theorem of Linnik and Walfisz, Proc. London Math. Soc. (2) 50 (1949) 423–429 and The Collected Papers of Sarvadaman Chowla, Vol. 2 (Centre de Recherches Mathematiques, 1999), pp. 696–702] states that for infinitely many fundamental discriminants D we have [Formula: see text] where χD is the quadratic Dirichlet character of conductor D. In this paper, we prove an analogous result for the logarithmic derivative [Formula: see text], and investigate the growth of the logarithmic derivatives of real Dirichlet L-functions. We show that there are infinitely many fundamental discriminants D (both positive and negative) such that [Formula: see text] and infinitely many fundamental discriminants 0 < D such that [Formula: see text] In particular, we show that the Euler–Kronecker constant γK of a quadratic field K satisfies γK = Ω( log log |dK|). We get sharper results assuming the GRH. Moreover, we evaluate the moments of [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
39

Ma, Rong, Yana Niu, and Yulong Zhang. "On asymptotic properties of the generalized Dirichlet L-functions." International Journal of Number Theory 15, no. 06 (July 2019): 1305–21. http://dx.doi.org/10.1142/s1793042119500738.

Full text
Abstract:
Let [Formula: see text] be an integer, [Formula: see text] denote a Dirichlet character modulo [Formula: see text], for any real number [Formula: see text], we define the generalized Dirichlet [Formula: see text]-functions [Formula: see text] where [Formula: see text] with [Formula: see text] and [Formula: see text] both real. It can be extended to all [Formula: see text] by analytic continuation. In this paper, we study the mean value properties of the generalized Dirichlet [Formula: see text]-functions, and obtain several sharp asymptotic formulae by using analytic method.
APA, Harvard, Vancouver, ISO, and other styles
40

Xu, Zhefeng, and Wenpeng Zhang. "Some identities involving the Dirichlet L-function." Acta Arithmetica 130, no. 2 (2007): 157–66. http://dx.doi.org/10.4064/aa130-2-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Young, Matthew. "The fourth moment of Dirichlet $L$-functions." Annals of Mathematics 173, no. 1 (January 4, 2011): 1–50. http://dx.doi.org/10.4007/annals.2011.173.1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Fujii, Akio. "Zeta zeros and Dirichlet $L$-functions, II." Proceedings of the Japan Academy, Series A, Mathematical Sciences 64, no. 8 (1988): 296–99. http://dx.doi.org/10.3792/pjaa.64.296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

LOUBOUTIN, STEPHANE R. "TWISTED QUADRATIC MOMENTS FOR DIRICHLET L-FUNCTIONS." Bulletin of the Korean Mathematical Society 52, no. 6 (November 30, 2015): 2095–105. http://dx.doi.org/10.4134/bkms.2015.52.6.2095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Balčiūnas, Aidas, and Antanas Laurinčikas. "The Laplace transform of Dirichlet L-functions." Nonlinear Analysis: Modelling and Control 17, no. 2 (April 25, 2012): 127–38. http://dx.doi.org/10.15388/na.17.2.14063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Li, H. "Zero-free regions for Dirichlet L-functions." Quarterly Journal of Mathematics 50, no. 197 (March 1, 1999): 13–23. http://dx.doi.org/10.1093/qjmath/50.197.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Nianliang, Junzhuang Li, and Duansen Liu. "Euler numbers congruences and Dirichlet L-functions." Journal of Number Theory 129, no. 6 (June 2009): 1522–31. http://dx.doi.org/10.1016/j.jnt.2009.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Childress, Nancy, and Jeffrey Stopple. "Formal groups and Dirichlet L-functions, I." Journal of Number Theory 41, no. 3 (July 1992): 283–94. http://dx.doi.org/10.1016/0022-314x(92)90127-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Childress, Nancy, and Jeffrey Stopple. "Formal groups and Dirichlet L-functions, II." Journal of Number Theory 41, no. 3 (July 1992): 295–302. http://dx.doi.org/10.1016/0022-314x(92)90128-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Conrey, J. B., and K. Soundararajan. "Real zeros of quadratic Dirichlet L-functions." Inventiones mathematicae 150, no. 1 (October 2002): 1–44. http://dx.doi.org/10.1007/s00222-002-0227-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chandee, Vorrapan, and Xiannan Li. "The eighth moment of Dirichlet L -functions." Advances in Mathematics 259 (July 2014): 339–75. http://dx.doi.org/10.1016/j.aim.2014.03.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography