Academic literature on the topic 'Fonctions zêta'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fonctions zêta.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fonctions zêta"
Dan, Nicusor. "Fonctions zêta d'Igusa et fonctions hypergéométriques." Annales Polonici Mathematici 71, no. 1 (1999): 61–86. http://dx.doi.org/10.4064/ap-71-1-61-86.
Full textde la Bretèche, Régis. "Fonctions zêta des hauteurs." Journal de Théorie des Nombres de Bordeaux 21, no. 1 (2009): 77–95. http://dx.doi.org/10.5802/jtnb.658.
Full textMínguez, Alberto. "Fonctions zêta ℓ-modulaires." Nagoya Mathematical Journal 208 (December 2012): 39–65. http://dx.doi.org/10.1017/s0027763000010588.
Full textBaudu, Michel, Gilles Guibaud, David Raveau, and Pierre Lafrance. "Prévision de l'adsorption de molécules organiques en solution aqueuse en fonctions de quelques caractéristiques physico-chimiques de charbons actifs." Water Quality Research Journal 36, no. 4 (November 1, 2001): 631–57. http://dx.doi.org/10.2166/wqrj.2001.034.
Full textCassaigne, Julien, and Vincent Maillot. "Hauteur des hypersurfaces et fonctions Zêta d'Igusa." Journal of Number Theory 83, no. 2 (August 2000): 226–55. http://dx.doi.org/10.1006/jnth.1999.2490.
Full textJenkner, Wolfgang. "Sur les fonctions zêta attachées aux classes de rayon." Journal de Théorie des Nombres de Bordeaux 7, no. 1 (1995): 1–14. http://dx.doi.org/10.5802/jtnb.126.
Full textGuillopé, Laurent. "Fonctions zêta de Selberg et surfaces de géométrie finie." Séminaire de théorie spectrale et géométrie 8 (1990): 89–94. http://dx.doi.org/10.5802/tsg.81.
Full textMoroianu, Sergiu. "Sur la limite adiabatique des fonctions êta et zêta." Comptes Rendus Mathematique 334, no. 2 (January 2002): 131–34. http://dx.doi.org/10.1016/s1631-073x(02)02230-6.
Full textDenef, J., and F. Loeser. "Caractéristiques d’Euler-Poincaré, fonctions zêta locales et modifications analytiques." Journal of the American Mathematical Society 5, no. 4 (1992): 705. http://dx.doi.org/10.1090/s0894-0347-1992-1151541-7.
Full textAchab, Dehbia. "Représentations des algèbres de rang 2 et fonctions zêta associées." Annales de l’institut Fourier 45, no. 2 (1995): 437–51. http://dx.doi.org/10.5802/aif.1461.
Full textDissertations / Theses on the topic "Fonctions zêta"
Achab, Dehbia. "Fonctions zêta des représentations des algèbres de Jordan." Paris 6, 1993. http://www.theses.fr/1993PA066287.
Full textFichou, Goulwen. "Fonctions zêta réelles et équivalence de Nash après éclatements." Habilitation à diriger des recherches, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00554877.
Full textGoutet, Philippe. "Sur la factorisation des fonctions zêta des hypersurfaces de Dwork." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00440384.
Full textBourqui, David. "Fonctions zêta des hauteurs des variétés toriques en caractéristique positive." Université Joseph Fourier (Grenoble), 2003. https://tel.archives-ouvertes.fr/tel-00004008.
Full textEupherte, Rémy. "Quasi-motifs et fonctions zêta des courbes sur les corps finis." Bordeaux 1, 2003. http://www.theses.fr/2003BOR1A002.
Full textThe aim of this work is to interpret the zeta function of a curve C defined over a finite field in terms of the quasi-motives of the curve obtained after extension of the scalars to the algebraic closure of the ground field, in particular the Borel-Moore homology quasi-motive G. The Borel-Moore homology quasi-motive of a curve defined over an algebraically closed field is a very simple complex of length 2. In this work, a functor Tl correctly defined giving l-adic realization and a precise analysis of the action of the Frobenius on Tl(G) lead to a compact expression for the zeta function of the curve C, even if C is singular and non projective. This result and results of duality between the l-adic realizations of the quasi-motives allow one to establish the functional equation satisfied by the zeta function. At last, we give an interpretation of the rationality of the zeta function, by means of a kind of trace formula
Eupherte, Rémy. "Quasi-motifs et fonctions zêta des courbes sur les corps finis." Bordeaux 1, 2003. http://www.theses.fr/2003BOR12779.
Full textThe aim of this work is to interpret the zeta function of a curve C defined over a finite field in terms of the quasi-motives of the curve obtained after extension of the scalars to the algebraic closure of the ground field, in particular the Borel-Moore homology quasi-motive G. The Borel-Moore homology quasi-motive of a curve defined over an algebraically closed field is a very simple complex of length 2. In this work, a functor Tl correctly defined giving l-adic realization and a precise analysis of the action of the Frobenius on Tl(G) lead to a compact expression for the zeta function of the curve C, even if C is singular and non projective. This result and results of duality between the l-adic realizations of the quasi-motives allow one to establish the functional equation satisfied by the zeta function. At last, we give an interpretation of the rationality of the zeta function, by means of a kind of trace formula
Velasquez, Castanon Oswaldo. "Sur la répartition des zéros de certaines fonctions méromorphes liées à la fonction zêta de Riemann." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13622/document.
Full textWe deal with three problems related to the Riemann zeta function: 1) The establishment of conditions to determine the alignment and simplicity of most of the zeros of a function of the form f(s)=h(s)±h(2c-s), where h(s) is a meromorphic function and c a real number. To this end, we generalise the Hermite-Biehler theorem concerning the stability of entire functions. As an application, we obtain some results about the distribution of zeros of translations of the Riemann Zeta Function and L functions, and about certain integrals of Eisenstein series. 2) The study of the distribution of the zeros of the partial sums of the zeta function, and of some approximations issued from the Euler-Maclaurin formula. 3) The study of the meromorphic continuation and the natural boundary of a class of Euler products, which includes a Dirichlet series used in the study of the distribution of values of the Euler totient
Campesato, Jean-Baptiste. "Une fonction zêta motivique pour l'étude des singularités réelles." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4104/document.
Full textThe main purpose of this thesis is to study real singularities using arguments from motivic integration as initiated by S. Koike and A. Parusiński and then continued by G. Fichou. In order to classify real singularities, T.-C. Kuo introduced the blow-analytic equivalence which is an equivalence relation on real analytic germs without moduli for isolated singularities. This notion is closely related to the notion of arc-analytic maps introduced by K. Kurdyka, thus it is natural to adapt arguments from motivic integration to the study of the relation. The difficulty lies in finding efficient ways to prove that two germs are equivalent and in constructing invariants that distinguish germs which are not in the same class. We focus on the blow-Nash equivalence, a more algebraic notion which was introduced by G. Fichou. The first part of this thesis consists in an inverse theorem for blow-Nash maps. Under certain assumptions, this ensures that the inverse of a homeomorphism which is blow-Nash is also blow-Nash. Such maps are involved in the definition of the blow-Nash equivalence. In the second part, we associate a power series to an analytic germ, called the zeta function of the germ. This construction generalizes the zeta functions of Koike-Parusiński and Fichou. Furthermore, it admits a convolution formula while being an invariant for the blow-Nash equivalence
Omar, Samir. "Zéros des séries L et des fonctions zêta de corps de nombres." Bordeaux 1, 2001. http://www.theses.fr/2001BOR12419.
Full textNaud, Frédéric. "Dynamique sur des ensembles de Cantor et propriétés analytiques de fonctions zêta." Bordeaux 1, 2003. http://www.theses.fr/2003BOR12715.
Full textMotivated by the links between the analytic properties of dynamical zeta functions and the resonances of the Laplace operator for non-compact problems, we study two classes of zeta functions related to the geodesic flow (whose dynamics are axiom A) on some infinite volume manifolds where the non-wandering set is of Cantor type. In the first case (open billiards), we show tha for generic obstacles, the corresponding zeta function has an analytic continuation to a polynomially decreasing neighborhood of the line of absolute ocnergence. In the second case (hyperbolic convex co-compact surfaces), we show, for the Selberg zeta function, the existence of a zero free strip on the feft of the line of absolute convergence. This résult implies an exponential error term for the prime orbit theorem of the geodesic flow
Books on the topic "Fonctions zêta"
1972-, Rivoal T., ed. Hypergéométrie et fonction zêta de Riemann. Providence, RI: American Mathematical Society, 2007.
Find full textP, Cartier, and Centre de physique des Houches., eds. Frontiers in number theory, physics, and geometry. Berlin: Springer, 2006.
Find full textSpectral functions in mathematics and physics. Boca Raton: Chapman & Hall/CRC, 2002.
Find full textFonction Zêta des hauteurs des variétés toriques non déployées. Providence, R.I: American Mathematical Society, 2010.
Find full textGodement, Roger, and Herve Jacquet. Zeta Functions of Simple Algebras. Springer London, Limited, 2006.
Find full textBook chapters on the topic "Fonctions zêta"
Chambert-Loir, Antoine, and Yuri Tschinke. "Fonctions ZÊta Des Hauteurs Des Espaces Fibrés." In Progress in Mathematics, 71–115. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8368-9_4.
Full textSerre, Jean-Pierre. "Formes modulaires et fonctions zêta p-adiques." In Oeuvres - Collected Papers III, 95–172. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-39816-2_97.
Full textSerre, Jean-Pierre. "Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures)." In Springer Collected Works in Mathematics, 581–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726-6_87.
Full textLouboutin, Stéphane. "Zéros réels des fonctions zêta et minorations de nombres de classes. Application à la majoration des discriminants de certains types de corps de nombres." In Progress in Mathematics, 135–52. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-4273-2_9.
Full textSerre, Jean-Pierre. "Sur le résidu de la fonction zêta p-adique d’un corps de nombres." In Oeuvres - Collected Papers III, 453–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-39816-2_116.
Full text"Monodromie locale et fonctions Zêta des log schémas." In Geometric Aspects of Dwork Theory, 983–1038. De Gruyter, 2004. http://dx.doi.org/10.1515/9783110198133.2.983.
Full text