Academic literature on the topic 'Food Chemistry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Food Chemistry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Food Chemistry"
Ramachandra Kolgi, Rajeev. "A Staple Food-Chemistry and Nutrition." International Journal of Science and Research (IJSR) 11, no. 10 (October 5, 2022): 1226–29. http://dx.doi.org/10.21275/sr221026193951.
Full textDziedzic, S. Z. "Food chemistry." Food Chemistry 21, no. 3 (January 1986): 235–36. http://dx.doi.org/10.1016/0308-8146(86)90021-x.
Full textThorne, Stuart. "Food Chemistry." Journal of Food Engineering 8, no. 3 (January 1988): 217–18. http://dx.doi.org/10.1016/0260-8774(88)90055-6.
Full textREISCH, MARC S. "FOOD CHEMISTRY, RELIGIOUSLY." Chemical & Engineering News 81, no. 16 (April 21, 2003): 18. http://dx.doi.org/10.1021/cen-v081n016.p018.
Full textArmstrong, David J. "Food Chemistry and U.S. Food Regulations." Journal of Agricultural and Food Chemistry 57, no. 18 (September 23, 2009): 8180–86. http://dx.doi.org/10.1021/jf900014h.
Full textTenginakai, Mr Hemant Kumar, and Dr Aamarpali Roy. "FOOD PRESERVATION AND CHEMISTRY: FASCINATING FACTS." IDC International Journal 10, no. 4 (October 15, 2023): 81–84. https://doi.org/10.47211/idcij.2023.v10i04.017.
Full textMolyneux, Russell J., John J. Beck, Steven M. Colegate, John A. Edgar, William Gaffield, John Gilbert, Thomas Hofmann, Laura L. McConnell, and Peter Schieberle. "Guidelines for unequivocal structural identification of compounds with biological activity of significance in food chemistry (IUPAC Technical Report)." Pure and Applied Chemistry 91, no. 8 (August 27, 2019): 1417–37. http://dx.doi.org/10.1515/pac-2017-1204.
Full textTaylor, Stephen L. "Food Chemistry and Toxicology." Journal of Food Science 66, no. 3 (April 2001): 385. http://dx.doi.org/10.1111/j.1365-2621.2001.tb16114.x.
Full textKennedy, John F., and Qian Huang. "Food Chemistry (2nd Edition)." Carbohydrate Polymers 53, no. 3 (August 2003): 346. http://dx.doi.org/10.1016/s0144-8617(02)00202-3.
Full textSchmitz, Oliver J. "Special Topic: Food Chemistry." Journal of Analysis and Testing 2, no. 2 (April 2018): 107–8. http://dx.doi.org/10.1007/s41664-018-0060-x.
Full textDissertations / Theses on the topic "Food Chemistry"
Uddin, Jalal. "NMR based Metabolomics in Food Chemistry." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424379.
Full textLa metabolomica è definita come l'analisi sistematica di centinaia o migliaia di piccoli metaboliti presenti in un sistema vivente. È emerso come un importante campo di studio insieme ad altre, già affermate scienze "omiche", vale a dire, genomica, proteomica e trascrittomica. La metabolomica è ben consolidata nel campo della medicina, nello studio della tossicità di farmaci e nella diagnostica. Tra le tecniche analitiche esistenti, NMR è veloce, riproducibile e non distruttiva, utile per fornire una fotografia informativa sui metaboliti in determinate condizioni. Dati NMR forniscono informazioni metaboliche che caratterizzano i campioni quando combinati con una pre-elaborazione dei dati e con strumenti chemiometrici, come le tecniche di statistica multivariata. La metabolomica basata sull’NMR è ancora in espansione nel campo della chimica degli alimenti. In questo contesto, questa tesi di Dottorato si concentra su due aspetti principali, che mostrano applicazioni della metabolomica basata sull’NMR in chimica degli alimenti. 1. Molti prodotti nutraceutici possiedono potente attività antiossidante, come dimostrato in molti test chimici in vitro e in diverse prove in vivo. Tuttavia, il meccanismo della loro attività non è completamente studiato in dettaglio. A causa della loro scarsa biodisponibilità e metabolismo veloce, sono ancora necessari studi in vivo sugli effetti antiossidanti. Abbiamo condotto esperimenti longitudinali su ratti Sprague Dawley (SD) utilizzando due prodotti antiossidanti nutraceutici comunemente disponibili, vale a dire, curcumina (capitolo 2) e resveratrolo (capitolo 3). Gli effetti di diverse dosi di estratti antiossidanti standardizzati somministrati per via orale nei ratti sani sono stati studiati mediante analisi metabolomica non mirata (untargeted) basata su LC-MS e spettrometria NMR. Gli esperimenti sono stati eseguiti lungo diversi periodi di tempo per diversi antiossidanti. Le variazioni del metaboloma urinario sono state valutate attraverso il monitoraggio della composizione delle urine di 24 ore usando 1H-NMR e HPLC-MS. I due differenti approcci sono stati in grado di rilevare le variazioni dei livelli urinari di marcatori antiossidanti, portando all’osservazione di diversi metaboliti e dimostrando così la complementarità di queste due tecniche analitiche per scopi metabolomici. Strumenti di analisi come la spettroscopia NMR e MS in combinazione con chemiometria possono delineare l'impatto del tempo, dello stress, dello stato nutrizionale, e di perturbazioni ambientali su centinaia di metaboliti contemporaneamente. Ciò comporta complessi enormi set di dati che devono essere analizzati mediante un protocollo statistico accurato. La nostra strategia ha compreso una pre-elaborazione dei dati, l’analisi dei dati e la validazione dei modelli statistici. Dopo varie fasi di elaborazione di dati, l’analisi delle componenti principali (PCA) e l’analisi dei minimi quadrati parziali (PLS) sono state utilizzate per identificare i biomarcatori urinari. I modelli PLS sono stati convalidati dai test di permutazione e le variabili di importanza critica sono stati convalidati attraverso analisi univariata. 2. La seconda parte di questa tesi (capitoli 4 e 5) descrivono l'uso di metabolomica basata su NMR come strumento veloce, conveniente ed efficace per la discriminazione di origine e la scoperta di biomarcatori in analisi degli alimenti. Tradizionalmente, la determinazione dell'origine floreale del miele è condotta mediante analisi palinologica. Il metodo si basa sulla individuazione di polline mediante ispezione microscopica. Tuttavia, l'analisi melissopalinologica richiede perizia ed inoltre non è una tecnica molto affidabile per la discriminazione di origine botanica di alcuni titpi di miele. Inoltre, la regolamentazione del miele nell'Unione Europea (Codex Alimentarius 2001; Commissione Europea 2002) sottolinea che le origini botaniche e geografiche del prodotto devono essere stampate sull'etichetta, per evitare frodi, come l'adulterazione con zucchero industriale, vendita di prodotti sotto falso nome o aggiunte di miele di diversa origine floreale. Pertanto, vi è la necessità di stabilire un metodo per distinguere miele di diverse origini. Lo scopo di questo lavoro è stato quello di sviluppare un approccio metabolomico basato sull’NMR che ha utilizzato l'analisi statistica multivariata per discriminare l'origine botanica (capitolo 4) ed entomologica (capitolo 5) di diversi tipi di miele. statistica multivariata ci ha aiutato ad identificare i segnali più importanti per differenziare il miele sia dal punto di vista botanico che entomologico. I set di dati ottenuti sono stati utili nella ricerca di marcatori responsabili della discriminazione dei diversi campioni di miele di diverse specie botaniche e prodotti da diverse specie di api.
Keramat, Javad. "The chemistry of the coloured compounds formed during sugar manufacture." Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241642.
Full textAllmann, Michael. "Applications of the polymerase chain reaction (PCR) in food chemistry /." [S.l.] : [s.n.], 1994. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textHoogland, J. S. "Properties of low molecular weight food surfactants." Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333908.
Full textMatteo, Roberto <1985>. "Non-food Brassicas for green chemistry purposes through a biorefinery approach." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amsdottorato.unibo.it/8006/1/Matteo_Roberto_tesi.pdf.
Full textCustodio, Joseph M. "Predicting intestinal transporter effects in food-drug interactions and the role of food on drug absorption." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3324590.
Full textChong, Miguel. "T. P. COULTATE. Food: the chemistry of its components. [London] : The Royal Society of Chemistry, 1996. 360 p." Revista de Química, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/100294.
Full textPironti, Concetta. "Innovative applications of stable carbon isotope ratio in environmental and food chemistry." Doctoral thesis, Universita degli studi di Salerno, 2018. http://hdl.handle.net/10556/3022.
Full textIn the last year, the stable isotope ratio analysis has become a useful tool with many applications in different scientific area. In particular the characteristic isotope signature of materials has permitted to identify authenticity and traceability of food sample and isotope composition has become a valuable marker in environmental studies. This work shows the applicability of analytical methods for isotopic carbon determination in food and environmental samples and the innovative use of δ13C in cultural heritage as valuable tool to trace pollutant fate. The first part is dedicated to the improvement of spectroscopic methods as Fourier Transform Infrared (FT-IR) and Non-Dispersive Infrared spectroscopy (NDIRS) and their application to identify geographical origin in sample like pasta, cocoa, olive oil. The results conducted in order to assess the robustness of the two alternative methods respecting IRMS showed a strong correlation like a demonstration of the positive relationship between the tested analytical methods. A new method was developed 13C NMR spectroscopy to determine the bulk 13C/12C carbon isotope ratio of inorganic carbonates and bicarbonates at natural abundance. In literature the use of 13C NMR spectroscopy was focused on 13C position-specific isotope analysis of organic molecules; in this work it was reported the improvement of NMR methodology able to obtain stable carbon isotope ratio in bulk material using an internal standard...[edited by Author]
XXX ciclo
Gray, Jason. "Monoglyceride food surfactants and their interaction with whey proteins." Thesis, University of Salford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301418.
Full textChityala, Pavan Kumar. "Evaluation of Xanthan/Enzymatically Modified Guar Gum Mixtures in Oil-in-Water Emulsions." TopSCHOLAR®, 2015. http://digitalcommons.wku.edu/theses/1528.
Full textBooks on the topic "Food Chemistry"
Belitz, H. D., W. Grosch, and P. Schieberle. Food Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07279-0.
Full textBelitz, H. D., and W. Grosch. Food Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-07281-3.
Full text(Werner), Grosch W., and Schieberle Peter, eds. Food chemistry. 4th ed. Berlin: Springer, 2009.
Find full textWrolstad, Ronald E. Food Carbohydrate Chemistry. West Sussex, UK: John Wiley & Sons Inc., 2012. http://dx.doi.org/10.1002/9781118688496.
Full textSrinivasan, Damodaran, Parkin Kirk, and Fennema Owen R, eds. Fennema's food chemistry. Boca Raton: Taylor & Francis, 2007.
Find full textBook chapters on the topic "Food Chemistry"
Belitz, H. D., W. Grosch, and P. Schieberle. "Food Contamination." In Food Chemistry, 474–504. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07279-0_10.
Full textBelitz, H. D., W. Grosch, and P. Schieberle. "Food Additives." In Food Chemistry, 434–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07279-0_9.
Full textBelitz, H. D., and W. Grosch. "Food Contamination." In Food Chemistry, 440–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-07281-3_10.
Full textBelitz, H. D., and W. Grosch. "Food Additives." In Food Chemistry, 402–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-07281-3_9.
Full textÖzilgen, Sibel. "Basic Food Chemistry." In Cooking as a Chemical Reaction, 23–31. Second edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429487088-2.
Full textChieh, C. "Water Chemistry and Biochemistry." In Food Biochemistry and Food Processing, 84–106. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118308035.ch5.
Full textPriyadarshi, Siddharth, Kanchan Goyal, and Madeneni Madhava Naidu. "Flavor Chemistry." In Advances in Food Chemistry, 313–51. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4796-4_9.
Full textKontogiorgos, Vassilis. "Flavour Chemistry." In Introduction to Food Chemistry, 147–62. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-53558-1_8.
Full textKontogiorgos, Vassilis. "Colour Chemistry." In Introduction to Food Chemistry, 131–46. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-53558-1_7.
Full textKontogiorgos, Vassilis. "Colour Chemistry." In Introduction to Food Chemistry, 157–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85642-7_7.
Full textConference papers on the topic "Food Chemistry"
Shahapur, Shreya, N. Pooja, Tilottoma Kargupta, and Nirmal Mazumder. "Anthocyanin-Incorporated Starch Bioplastic: Characterization Study." In Frontiers in Optics, JD4A.35. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jd4a.35.
Full textNegru, Alina Giorgiana, Claudiu Roman, Cornelia Amarandei, Romeo Iulian Olariu, and Cecilia Arsene. "ASSESSING THE OH-INITIATED BREAKDOWN CHEMISTRY OF CAMPHENE AND 3-CARENE UNDER NOX-FREE SIMULATED ATMOSPHERIC CONDITIONS." In 24th SGEM International Multidisciplinary Scientific GeoConference 2024, 169–76. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024v/4.2/s18.24.
Full textStauffer, C. C., W. E. Allmon, A. F. Aschoff, and R. B. Dooley. "Experience with Water Sampling and Chemistry Monitoring Equipment." In CORROSION 1991, 1–20. NACE International, 1991. https://doi.org/10.5006/c1991-91216.
Full textLehn, J. M. "Supramolecular chemistry and food science : food for thought and thought for food." In 13th World Congress of Food Science & Technology. Les Ulis, France: EDP Sciences, 2006. http://dx.doi.org/10.1051/iufost:20061356.
Full textNisha, R. Bakyalakshmi, and S. Madhumitha. "Solar food processor." In 2010 International Conference on Chemistry and Chemical Engineering (ICCCE). IEEE, 2010. http://dx.doi.org/10.1109/iccceng.2010.5560407.
Full textYunindanova, Mercy Bientri, and Sastia Prama Putri. "Metabolomics application for food quality improvement and reduction of food loss." In INTERNATIONAL CONFERENCE ON ORGANIC AND APPLIED CHEMISTRY (ICOAC) 2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0195076.
Full textLlorens-Molina, Juan Antonio. "INTRODUCTORY ORGANIC CHEMISTRY FOR FOOD SCIENCE AND TECHNOLOGY." In 12th International Technology, Education and Development Conference. IATED, 2018. http://dx.doi.org/10.21125/inted.2018.0560.
Full textKurnia, Nova, Liliasari Liliasari, Dede Adawiyah, and Florentina Titin Supriyanti. "The study of traditional food HACCP through project-based learning in food chemistry course." In Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, 12 October 2019, Bandung, West Java, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.12-10-2019.2296379.
Full textDamayanti, Astrilia, Zuhriyan Ash Shiddieqy Bahlawan, Ima Winaningsih, R. R. Ramadhani, Welson Adi Putra Bancin, and Bagus Yuliono. "A quality analysis of different types of peanuts tempeh wrap as food security." In THE 18TH JOINT CONFERENCE ON CHEMISTRY 2023 (18th JCC - 2023): Chemistry for Sustainable Development, 020030. AIP Publishing, 2025. https://doi.org/10.1063/5.0236745.
Full textBeltramino, Juan, Melanie Mesa, and Soledad Soto. "Food for celiacs with black quinoa (Chenopodium petiolare kunth)." In 5th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2019. http://dx.doi.org/10.3390/ecmc2019-06347.
Full textReports on the topic "Food Chemistry"
Chailapakul, Orawon. Novelty in Analytical Chemistry for Innovation of Detection. Chulalongkorn University, 2017. https://doi.org/10.58837/chula.res.2017.19.
Full textOsborne, Olivia, Cath Mulholland, Tim Gant, Phil Botham, Alan Boobis, and Sophy Wells. Opportunities and outlook for UK Food and Chemicals regulation post EU Exit Workshop Report 2022. Food Standards Agency, September 2023. http://dx.doi.org/10.46756/sci.fsa.ebr546.
Full textKeinan, Ehud. The 18th Asian Chemical Congress and the 20th General Assembly of the FACS. AsiaChem Magazine, November 2020. http://dx.doi.org/10.51167/acm00015.
Full text