Academic literature on the topic 'Food – Sensory evaluation – Statistical methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Food – Sensory evaluation – Statistical methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Food – Sensory evaluation – Statistical methods"
Jowitt, Ronald. "Sensory evaluation of food — Statistical methods and procedures." Journal of Food Engineering 6, no. 6 (January 1987): 478–79. http://dx.doi.org/10.1016/0260-8774(87)90009-4.
Full textGang-Ling, Hou, Ge Bin, Sun Liang-Liang, and Xing Kai-Xin. "A study on wine sensory evaluation by the statistical analysis method." Czech Journal of Food Sciences 38, No. 1 (February 29, 2020): 1–10. http://dx.doi.org/10.17221/438/2017-cjfs.
Full textNikitina, M. A., and Y. A. Ivashkin. "Expert system of food sensory evaluation for mobile and tablet." Information Technology and Nanotechnology, no. 2416 (2019): 332–39. http://dx.doi.org/10.18287/1613-0073-2019-2416-332-339.
Full textMacháčková, Karolina, Jiří Zelený, Daniel Lang, and Zbyněk Vinš. "Wild Boar Meat as a Sustainable Substitute for Pork: A Mixed Methods Approach." Sustainability 13, no. 5 (February 25, 2021): 2490. http://dx.doi.org/10.3390/su13052490.
Full textTešanovic, Dragan, Milovan Krasavcic, Bojana Miro Kalenjuk, Milijanko Portic, and Snježana Gagic. "The influence of the structure of employees on sensory quality of restaurants' food." British Food Journal 116, no. 3 (February 25, 2014): 527–43. http://dx.doi.org/10.1108/bfj-05-2012-0112.
Full textMartins, Z. E., O. Pinho, and I. M. P. L. V. O. Ferreira. "Fortification of Wheat Bread with Agroindustry By-Products: Statistical Methods for Sensory Preference Evaluation and Correlation with Color and Crumb Structure." Journal of Food Science 82, no. 9 (August 10, 2017): 2183–91. http://dx.doi.org/10.1111/1750-3841.13837.
Full textCox, Ginnefer, Allie Lindke, Debra Morris, Travis Smith, and Caree Cotwright. "Sensory Evaluation of Plant-Based Protein Entrees for the National School Lunch Program." Current Developments in Nutrition 5, Supplement_2 (June 2021): 579. http://dx.doi.org/10.1093/cdn/nzab044_010.
Full textKalamatianos, Romanos, Ioannis Karydis, and Markos Avlonitis. "Methods for the Identification of Microclimates for Olive Fruit Fly." Agronomy 9, no. 6 (June 25, 2019): 337. http://dx.doi.org/10.3390/agronomy9060337.
Full textElodie, Kouassi Amenan, Gbogouri Grodji Albarin, Ndri Yao Denis, Niaba Koffi Pierre Valery, Amoakon Léonce, Clemens Korboi Vanessa, and Menzan Guy-Roland. "Corn Flour Formulation and Fortification Tests: Evaluation of Acceptability of Local Derived Product Called “Kabato” Case of Napalakaha, Nibolikaha and Tiangakaha of Region of Korhogo." Journal of Food Research 9, no. 1 (January 7, 2020): 41. http://dx.doi.org/10.5539/jfr.v9n1p41.
Full textOludolapo A., Osunrinade, Azeez Abibat O., Babalola Kafayat A., and Bamisaye Yemisi O. "Physical, Proximate and Sensory Properties of Cake Produced using Shea Butter as Shortening." Open Food Science Journal 12, no. 1 (December 31, 2020): 18–23. http://dx.doi.org/10.2174/1874256402012010018.
Full textDissertations / Theses on the topic "Food – Sensory evaluation – Statistical methods"
Krishnamurthy, Raju Chemical Sciences & Engineering Faculty of Engineering UNSW. "Prediction of consumer liking from trained sensory panel information: evaluation of artificial neural networks (ANN)." Awarded by:University of New South Wales. Chemical Sciences & Engineering, 2007. http://handle.unsw.edu.au/1959.4/40746.
Full textMeintjes, M. M. (Maria Magdalena). "Evaluating the properties of sensory tests using computer intensive and biplot methodologies." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/20881.
Full textENGLISH ABSTRACT: This study is the result of part-time work done at a product development centre. The organisation extensively makes use of trained panels in sensory trials designed to asses the quality of its product. Although standard statistical procedures are used for analysing the results arising from these trials, circumstances necessitate deviations from the prescribed protocols. Therefore the validity of conclusions drawn as a result of these testing procedures might be questionable. This assignment deals with these questions. Sensory trials are vital in the development of new products, control of quality levels and the exploration of improvement in current products. Standard test procedures used to explore such questions exist but are in practice often implemented by investigators who have little or no statistical background. Thus test methods are implemented as black boxes and procedures are used blindly without checking all the appropriate assumptions and other statistical requirements. The specific product under consideration often warrants certain modifications to the standard methodology. These changes may have some unknown effect on the obtained results and therefore should be scrutinized to ensure that the results remain valid. The aim of this study is to investigate the distribution and other characteristics of sensory data, comparing the hypothesised, observed and bootstrap distributions. Furthermore, the standard testing methods used to analyse sensory data sets will be evaluated. After comparing these methods, alternative testing methods may be introduced and then tested using newly generated data sets. Graphical displays are also useful to get an overall impression of the data under consideration. Biplots are especially useful in the investigation of multivariate sensory data. The underlying relationships among attributes and their combined effect on the panellists’ decisions can be visually investigated by constructing a biplot. Results obtained by implementing biplot methods are compared to those of sensory tests, i.e. whether a significant difference between objects will correspond to large distances between the points representing objects in the display. In conclusion some recommendations are made as to how the organisation under consideration should implement sensory procedures in future trials. However, these proposals are preliminary and further research is necessary before final adoption. Some issues for further investigation are suggested.
AFRIKAANSE OPSOMMING: Hierdie studie spruit uit deeltydse werk by ’n produk-ontwikkeling-sentrum. Die organisasie maak in al hul sensoriese proewe rakende die kwaliteit van hul produkte op groot skaal gebruik van opgeleide panele. Alhoewel standaard prosedures ingespan word om die resultate te analiseer, noodsaak sekere omstandighede dat die voorgeskrewe protokol in ’n aangepaste vorm geïmplementeer word. Dié aanpassings mag meebring dat gevolgtrekkings gebaseer op resultate ongeldig is. Hierdie werkstuk ondersoek bogenoemde probleem. Sensoriese proewe is noodsaaklik in kwaliteitbeheer, die verbetering van bestaande produkte, asook die ontwikkeling van nuwe produkte. Daar bestaan standaard toets- prosedures om vraagstukke te verken, maar dié word dikwels toegepas deur navorsers met min of geen statistiese kennis. Dit lei daartoe dat toetsprosedures blindelings geïmplementeer en resultate geïnterpreteer word sonder om die nodige aannames en ander statistiese vereistes na te gaan. Alhoewel ’n spesifieke produk die wysiging van die standaard metode kan regverdig, kan hierdie veranderinge ’n groot invloed op die resultate hê. Dus moet die geldigheid van die resultate noukeurig ondersoek word. Die doel van hierdie studie is om die verdeling sowel as ander eienskappe van sensoriese data te bestudeer, deur die verdeling onder die nulhipotese sowel as die waargenome- en skoenlusverdelings te beskou. Verder geniet die standaard toetsprosedure, tans in gebruik om sensoriese data te analiseer, ook aandag. Na afloop hiervan word alternatiewe toetsprosedures voorgestel en dié geëvalueer op nuut gegenereerde datastelle. Grafiese voorstellings is ook nuttig om ’n geheelbeeld te kry van die data onder bespreking. Bistippings is veral handig om meerdimensionele sensoriese data te bestudeer. Die onderliggende verband tussen die kenmerke van ’n produk sowel as hul gekombineerde effek op ’n paneel se besluit, kan hierdeur visueel ondersoek word. Resultate verkry in die voorstellings word vergelyk met dié van sensoriese toetsprosedures om vas te stel of statisties betekenisvolle verskille in ’n produk korrespondeer met groot afstande tussen die relevante punte in die bistippingsvoorstelling. Ten slotte word sekere aanbevelings rakende die implementering van sensoriese proewe in die toekoms aan die betrokke organisasie gemaak. Hierdie aanbevelings word gemaak op grond van die voorafgaande ondersoeke, maar verdere navorsing is nodig voor die finale aanvaarding daarvan. Waar moontlik, word voorstelle vir verdere ondersoeke gedoen.
Montes, Villanueva Nilda Doris. "Avaliação do desempenho de quatro metodos de escalonamento em testes sensoriais de aceitação utilizando modelos normais aditivos de analise da variancia e mapas internos de preferencia." [s.n.], 2003. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254953.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-03T16:42:14Z (GMT). No. of bitstreams: 1 MontesVillanueva_NildaDoris_D.pdf: 7571939 bytes, checksum: 5b97da35754c8719f94ee3b21e0cf955 (MD5) Previous issue date: 2003
Resumo: Em testes sensoriais, a análise dos dados geralmente é realizada através de algum modelo ANOVA. Estes modelos pressupõem que as respostas experimentais sejam: i) independentes, ii) normalmente distribuídas, m) homoscedásticas (variâncias iguais) e, iv) provenientes de uma mesma escala de medida (aditividade). Os principais problemas na análise de dados sensoriais através de modelos ANOV A referem-se aos dois últimos pressupostos. A homogeneidade das variâncias não pode ser assegurada devido à existência de pelo menos duas fontes potenciais de variabilidade dos dados, quais sejam: provadores e tratamentos. Por outro lado, a aditividade pode ser violada quando um provador utiliza faixas consistentemente mais (ou menos) amplas da escala para expressar a sua impressão sobre o produto. A maneira pessoal com que cada provador utiliza a escala para avaliar os produtos, chama-se de variação da expansibilidade entre provadores. Tanto a falta de homogeneidade das variâncias como a não aditividade do modelo, acarretam conseqüências sérias na obtenção do verdadeiro nível de significância para o efeito dos tratamentos, podendo afetar adversamente as comparações entre as médias dos tratamentos e comprometer seriamente tanto a interpretação dos resultados fornecidos pelo experimento como a validade do modelo ANOVA. Em testes com consumidores, escalas tradicionais como a escala hedônica de 9 pontos freqüentemente apresentam a seguinte problemática: i) geram dados que freqüentemente não satisfazem os pressupostos estatísticos de normalidade, aditividade e homoscedasticidade exigidos nos modelos ANOVA, ii) oferecem pouca liberdade aos consumidores para expressarem. suas percepções sensoriais, devido ao limitado número de categorias, m) induzem efeitos numéricos e contextuais no julgamento dos provadores e, iv) os valores numéricos associados às suas categorias, embora numericamente possuam intervalos iguais, não refletem iguais diferenças em percepção. Das metodologias utilizadas em testes sensoriais com consumidores, a escala hedônica de 9 pontos, é sem dúvida, a mais utilizada. Porém, em função da problemática anteriormente mencionada, surge a necessidade de serem pesquisadas escalas alternativas que possuam um melhor desempenho que a escala hedônica tradicional, tanto quando os dados são analisados através de modelos ANOVA como quando os mesmos são analisados através de métodos multivariados como Mapa Interno de Preferência - MDPREF. De um modo geral, o objetivo do presente trabalho foi pesquisar o desempenho de duas escalas alternativas em estudos com consumidores, quais sejam: escala autoajustável e escala hedônica híbrida, comparando-as com métodos afetivos tradicionais como a escala de ordenação e escala hedônica de 9 pontos. Para isso, três experimentos foram realizados conforme descrito a seguir: o primeiro experimento foi realizado com o objetivo de se avaliar em condições reais de teste de consumidor, o desempenho da escala autoajustável em relação à escala hedônica de 9 pontos e escala de ordenação, utilizando-se os seguintes critérios: i) diferenças em expansibilidade entre provadores, ii) poder discriminativo e, iii) adequação dos dados coletados por cada escala aos pressupostos do modelo ANOVA. Três marcas comerciais de confeitos foram avaliadas por 288 consumidores. Os resultados obtidos através das escalas hedônica de 9 pontos e autoajustável foram analisados através de ANOVA e os resultados da escala de ordenação, através do teste de Friedman. Os valores de pFamostra. pFprovador e QMresíduo fornecidos pela ANOVA de cada escala, foram respectivamente utilizados para avaliar o poder discriminativo, a expansibilidade dos provadores e a variabilidade residual dos dados. Teste de Tukey foi também aplicado para análise do poder discriminativo de cada escala. A normalidade dos dados foi verificada através do cálculo dos Coeficientes de assimetria e curtose, gráfico de probabilidade normal e teste de Kolmogorov-Smirnov. A homoscedasticidade, foi avaliada através de gráficos de dispersão e teste de Levene. Os resultados mostraram que a escala autoajustável foi efetiva para tratar o problema da expansibilidade entre provadores e da desigualdade das variâncias, porém, os resíduos mostraram moderados desvios da normalidade. A escala hedônica de 9 pontos apresentou problemas de heteroscedasticidade. As escalas autoajustável e de ordenação apresentaram o menor e o maior poder discriminativo respectivamente. Apesar dos problemas detectados, as três escalas apresentaram as mesmas tendências de preferência dos produtos avaliados. O segundo experimento foi realizado com o objetivo de se avaliar o desempenho da escala hedônica híbrida em estudos com consumidores, comparando-a à escala hedônica de 9 pontos, escala autoajustável, e escala de ordenação; através dos seguintes critérios: i) variabilidade das respostas sensoriais, ii) poder discriminativo, iii) adequação dos dados às suposições dos modelos ANOVA e, iv) facilidade de uso pelos consumidores. Cinco marcas de suco de laranja foram avaliadas por 80 consumidores, divididos em quatro grupos de 20 indivíduos cada. Todos os indivíduos avaliaram todas as amostras através de todas as escalas em 4 diferentes sessões de degustação. Um delineamento em quadrado latino 4x4, foi utilizado para controlar o efeito de ordem de apresentação das escalas e avaliar sem vícios a facilidade de uso das mesmas. Para cada escala, a ordem de apresentação das amostras e efeitos residuais ("carry-over") foram balanceados. Os resultados obtidos através das escalas hedônica tradicional, híbrida e autoajustável foram avaliados através de ANOVA. A normalidade dos dados foi verificada através do teste de Shapiro-Wilks, a homoscedasticidade através do teste de Brown-Forsythe e a aditividade, através do teste de Tukey para um grau de liberdade. Os valores de pFamostra, pFprovador e QMresíduo fornecidos pela ANOVA de cada escala, foram respectivamente utilizados para avaliar o poder discriminativo, a expansibilidade dos provadores e a variabilidade residual dos dados. O teste de REGWQ foi também aplicado para análise do poder discriminativo de cada escala. Os resultados obtidos através da escala de ordenação foram avaliados pelo teste de Friedman e, a facilidade de uso das escalas por testes de Cochran-Mantel-Haenszel. Os resultados sugeriram uma superioridade da escala hedônica híbrida sobre as escalas hedônica estruturada e a utoaj ustável , tanto em função do poder discriminativo como da adequação dos dados às suposições de normalidade e homoscedasticidade. A despeito dos dados da escala autoajustável terem apresentado maior variabilidade e sérios desvios da normalidade dos resíduos, o poder discriminativo desta escala foi ligeiramente superior ao da escala hedônica estruturada. A escala de ordenação apresentou o menor poder discriminativo em relação às demais. As escalas hedônicas estruturada e híbrida foram consideradas significativamente (p:S;0,01) mais fáceis de serem utilizadas que a autoajustável, não havendo diferença (p:s;O,OS) entre as duas primeiras. Finalmente, o objetivo do terceiro experimento foi avaliar o desempenho das escalas hedônica estruturada, hedônica híbrida e autoajustável na construção de Mapas Internos de Preferência - MDPREF. Nesta pesquisa, a aceitação global de 8 marcas comerciais de vinho tinto, a maioria deles varietal Cabernet Sauvignon, foi avaliada por 112 consumidores. Foram utilizados delineamentos experimentais balanceados para ordem de apresentação das escalas, ordem de apresentação das amostras e efeitos residuais. Os dados foram analisados através de ANOV A e MDPREF. O critério de avaliação do desempenho da cada escala baseou-se no número de consumidores significativamente ajustados (ps O,OS) e no grau de segmentação dos produtos e dos consumidores produzidos pelo MDPREF. Os resultados sugeriram uma superioridade da escala híbrida sobre a escala hedônica tradicional e autoajustável. O MDPREF gerado pelos dados da escala híbrida produziu um maior número de dimensões significativas de preferência (pS O,OS), trazendo como decorrência, uma porcentagem de 79,S% consumidores significativamente ajustados (pS O,OS), enquanto a escala autoajustável ajustou S4,S% dos consumidores e a escala hedônica S1,8%. Em geral a escala hedônica de 9 pontos apresentou um desempenho inferior ao das demais escalas. Os resultados do presente estudo sugerem fortemente que a escala hedônica híbrida é uma ferramenta válida e eficiente que pode ser utilizada na coleta de dados associados a estudos com consumidores, tanto quando eles forem analisados através de modelos normais para análise da variância como através da metodologia de Mapa Interno de Preferência
Abstract: In sensory tests, the basie statistieal toei for analyzing data is almost invariably some sort of analysis of variance models. These models presuppose that the experimental responses are: i) independent, ii) normally distributed, iii) homoscedastie (have equal varianees) and, iv) seores are on the same scale of measurement (additivity). The main problems arising from the analysis of sensory data using ANOVA models are related to the last two assumptions. Homogeneity of error variance is not assured, espeeially as there are at least two potential sources of heterogeneity: treatments and assessors. On the other hand, the additivity could be violated if one assessor used a eonsistently larger (or smaller) portion of the scale range, scoring more (or less) expansively than other assessors to express his opinion of the produet. The individual way in whieh eaeh panelist uses the scale to evaluate the produets is known as the differential expansiveness of seoring between assessors. 80th the laek of homogeneity of the variances and the non-additivity of the model, result in serious consequenees in obtaining a true levei of significance for the effect of the treatments and may adversely affeet the eomparison of treatment means. The non-additivity can seriously affeet and possible invalidate the analysis of variance and the interpretation of the results that it provides. In consumer tests, traditional scales sueh as the nine-point hedonie scale frequently present the following problems: i) they do not satisfy the statistical assumptions of independenee, normalityand homoscedastieity required by ANOVA models; ii) they give little freedom to the individuais to express their perceptions, due to the limited number of categories; iii) they induce numerical and contextual effects in the judgments by the panelists and, iv) the difference between numerical values associated with the categories do not reflect equivalent differenees in perception. Of the methodologies used in sensory tests with consumers, the 9-point hedonie scale is undoubtedly the most widely used. However, considering the previously mentioned problem, there is a need to investigate alternative scales providing better performanee than the traditional hedonie scale, both when the data are analyzed by ANOVA models and multivariate methods such as the Internal Preference Map - MDPREF. In general the objective of this research was to investigate the performance of two alternative scales in consumer studies, these being the self-adjusting scale and the hybrid hedonic scale, comparing them with traditional affective methods such as the ranking scale and the 9-point hedonic scale. With this objective three experiments were carried out as follows: The first experiment was carried out with the objective of evaluating the performance of the self-adjusting scale as compared to the 9-point hedonic scale and ranking scale under real consumer test conditions, using the following criteria: i) differential expansiveness between assessors, ii) discriminating power and, iii) compliance of the data collected by each scale with the ANOVA assumptions. Three commercial brands of candy were evaluated by 288 consumers. The results obtained from the 9-point hedonic and self-adjusting scales were analyzed by ANOVA and those of the ranking test by Friedman's test. The values for pFsample, pFassessor and QMerror provided by ANOV A for each scale, were used respectively to evaluate the discriminating power, the expansiveness of scoring between assessors and the data variability. Tukey's test was also applied to analyze the discriminating power of each scale. Normal probability plots, Kolmogorov-Smirnov test and coefficients of skewness and kurtosis checked data normality. Homoscedasticity was evaluated by scatter plots and the Levene test. The results showed that the self-adjusting scale was effective to deal with differential assessor expansiveness and produced homogeneous variances, however the residuais showed moderate deviations from normality. The 9-point hedonic scale showed problems with heteroscedasticity. Rank and the self-adjusting scales showed the highest and the lowest discriminating powers, respectively. Despite the problems detected, the three scales presented the same tendencies for preference amongst the products tested. The second experiment was carried out with the objective of evaluating the performance of the hybrid hedonic scale in consumer studies, comparing it with the 9point hedonic, the self-adjusting and the ranking scales, using the following criteria: i) variability of sensory response, ii) discriminative power, iii) data adequacy to the assumptions of ANOVA models and, iv) ease of use. Eighty consumers, divided into four groups of 20 individuais each, evaluated tive brands of orange juice. Ali the individuais evaluated ali the samples using ali the scales, in 4 distinct tasting sessions. A 4 x 4 Latin square design was used to control the effect of the order of presentation of the scales and evaluate their ease of use without biases. For each scale the presentation order and carry-over were balanced. The results obtained using the traditional hedonic, hybrid hedonic and self-adjusting scales were evaluated using ANOVA. Data normality was evaluated using the Shapiro-Wilks test, homoscedasticity by the Brown-Forsythe's test and the Tukey's one degree of freedom test for non-additivity. The values for pFsample, pFassessor and QMerror, provided by ANOVA for each scale, were used respectively to evaluate discriminating power, expansiveness between assessors and data variability. The REGWF test was also applied to analyze the discriminative power of each scale. The results obtained from the ranking test were evaluated by Friedman's test and the ease of use of the scales by the Cochran-Mantel-Haenszel tests. The results indicated the superiority of the hybrid hedonic scale as compared to the structured hedonic and self-adjusting scales, both with respect to discriminative power and to data adequacy to the assumptions of normality and homoscedasticity. The self-adjusting scale presented a slightly greater discriminative power than the structured hedonic scale, despite the former having presented data with a greater variability and lack of normality of the residuais. Of ali the methods, the ranking test presented the least discriminative power. The structured and hybrid hedonic scales were considered to be signiticantly (psO.01) easier to use than the self-adjusting scale, there being no difference (pSO.O5) between these first two scales. Finally, the objective of the third experiment was to evaluate the performance of the nine-point hedonic, hybrid hedonic and self-adjusting scales in the segmentation of samples and consumers using Internal Preference Mapping methodology. One hundred and twelve consumers evaluated the overall acceptability of 8 commercial brands of red wine, the majority being Cabernet Sauvignon. The effects of presentation order -scales and samples- and carry over effects were balanced. The data were analyzed by ANOVA and MDPREF. Scale performance was evaluated using as criteria: number of significant dimensions in the MDREF (psO.O5), number of consumers significantly adjusted (psO.O5) and the degree of segmentation of the products and consumers. The results suggested a superiority of the hybrid scale over the traditional hedonic and self-adjusting scales. The MDPREF generated by the hybrid scale data produced the greatest number of significant dimensions (p=5%), yielding 79.5% of the consumers significantly adjusted (p=5%), while the MDPREF generated by the self-adjusting scale adjusted 54.5% of the consumers and that of the hedonic scale, 51.8%. Overall, the 9-point hedonic scale showed the worst performance in relation to the other scales examined. The results of this study strongly suggest that the hybrid hedonic scale is a valid and efficient tool for use in data collection associated with consumer studies, both when analyzed by normal models for the analysis of variance and by Internal Preference Mapping methodology
Doutorado
Doutor em Alimentos e Nutrição
Li, Dong-Ching, and 李東檠. "Utilization of physicochemical analysis, sensory evaluation and statistical methods to evaluate meat quality." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/er3239.
Full text國立中興大學
動物科學系所
106
Emphasis of the importance in meat qualities has been increased continuously recently. Evaluation the qualities of beef and pork has been conducted for years. Some characteristics, such as juiciness, texture and flavor of pork and beef are often determined using physicochemical analysis and sensory evaluation. In contrast, there is less an objectively assessed standard for chicken meat. In Taiwan, some pork is sold at the ambient temperature. Consumers choose and purchase meat according to the sensory characteristics of products. A multivariate statistical method namely principal component analysis (PCA) has been used to identify the most critical variables in a multivariate data matrix, thus analyze data more effectively and efficiently. Additionally, some methods including the triangle test have been applied in the sensory evaluation. Therefore, this study was intended to utilize of physicochemical analysis, sensory evaluation and statistical methods to evaluate pork and chicken meet quality. In the 1st experiment, Taiwan native chicken (TNC) breast was cooked in a 95°C water bath until the internal temperature of the meat reached 85°C for 0, 20 and 40 minutes. Cooking loss, moisture content, water holding capacity (WHC) and some descriptive sensory parameters were determined, followed by a PCA analysis, thus to determine the juiciness of meat samples. In the 2nd experiment, shear force, total collagen content, and soluble collagen content as well as some descriptive sensory parameters of breast from TNC which fed for 12 and 16 weeks were determined, followed by a PCA analysis to analyze the texture of samples. In the 3rd experiment, sensory panelists attempted to apply the triangle test to differentiate the pork loins stored at 23±2°C for 4, 6, and 8 h (M4h, M6h, and M8h) as well as at 33±2°C for 2, 4, and 6 h (H2h, H4h, and H6h) to the one stored at 7°C (COM). The results of the 1st experiment showed that the four major principal components explained about 80.0% of the total variation. The PCA score plot showed a clear separation into the three clusters. According to the loadings, cooking loss, moisture content and WHC, as well as some sensory characteristics including moisture release, cohesiveness and oily mouthcoat were considered as the most effective variables for PC1, while WHC was most effectively to PC2. Sensory attributes including fiber texture, meat particle size, and chicken flavor intensity were effectively to PC3, while initial hardness, residual loose particles, and total acceptance were effectively to PC4. The results of the 2nd experiment showed that the four major principal components explained about 84.6% of the total variation. The PCA score plot showed a clear separation in two clusters. Base on the loadings, the soluble collagen content was effectively to PC1, while the total collagen content as well as some sensory characteristics including chew down hardness, chicken flavor intensity and total acceptance were the most effective variables to determine PC2. Three sensory attributes including moisture release, oily mouthcoat and chicken flavor intensity were effectively to PC3, while the total collagen content was effectively to PC4. The results of the 3rd experiment showed that the sensory characteristics of M8h and H6h samples significantly differed than those of COM (P < 0.05) base on the result of triangle test. According to the Fisher’s exact test, the chooses of 5 sensory characteristics including color, exudative, odor, mucus, and texture did not significantly relate to the correct answering and differentiation the samples (P > 0.05), thus more than one sensory characteristics was applied by the panelist to differentiate the samples. For M8h samples, texture was chosen by the 42.1% of the panelists who successfully differentiate samples, while texture was also chosen by the 80% of the panelist who differentiate samples fail. The results implied texture might be an appropriate judge criterion for those experienced panelists to functionally successfully while texture might be the possible cause leading to the failure for those inexperienced panelists. In summary, PCA can be applied to select a number of physicochemical and sensory parameters to determine the juiciness and texture characteristics of Taiwan native chicken breast effectively. Triangle test can be applied to evaluate the qualities of pork stored at ambient temperatures for 6 to 8 hours. In addition to the sensory characteristics that evaluated in the current study, the safety of product (i.e., the microbiological) should be also addressed. In conclusion, it is promising to apply physicochemical analysis, sensory evaluation and statistical methods appropriately to evaluate meat quality more effectively and efficiently.
Naini, Shuo. "A simulation tool for evaluating sensory data analysis methods." Thesis, 2003. http://hdl.handle.net/1957/27087.
Full textGraduation date: 2003
Rubico, Sonia Mendoza. "Perceptual characteristics of selected acidulants by different sensory and multivariate methods." Thesis, 1993. http://hdl.handle.net/1957/27072.
Full textGraduation date: 1993
Books on the topic "Food – Sensory evaluation – Statistical methods"
Sensory evaluation of food: Statistical methods and procedures. New York: M. Dekker, 1986.
Find full textBurgard, David R. Chemometrics: Chemical and sensory data. Boca Raton: CRC Press, 1990.
Find full textUchida, Osamu. Kannō hyōka no tōkei kaiseki. Tōkyō-to Shibuya-ku: Nikka Giren Shuppansha, 2012.
Find full textDesign and analysis of sensory optimization. Trumbull, Conn., USA: Food & Nutrition Press, 1993.
Find full textKemp, Sarah E. Sensory evaluation: A practical handbook. Chichester: Ames, Iowa, 2009.
Find full textGacula, Maximo C. Design and analysis of sensoryoptimization. Trumbull, Conn., USA: Food & Nutrition Press, 1993.
Find full textStandardization, International Organization for. Sensory analysis - methodology - evaluation of food products by methods using scales =: Analyst sensorielle - me thodologie - e valuation des produits alimentaires par des me thodes utilisant des e chelles. [Geneva]: International Organization for Standardization, 1987.
Find full textMichele, Ver Ploeg, Betson David, and National Research Council (U.S.). Committee on National Statistics, eds. Estimating eligibility and participation for the WIC program: Final report. Washington, DC: National Academies Press, 2003.
Find full textNational Research Council (U.S.). Panel to Evaluate the USDA's Methodology for Estimating Eligibility and Participation for the WIC Program. Estimating eligibility and participation for the WIC program: Phase I report. Edited by Ver Ploeg Michele, Betson David, and National Research Council (U.S.). Committee on National Statistics. Washington, DC: National Academy Press, 2001.
Find full textW, Rayner J. C., ed. Nonparametrics for sensory science: A more informative approach. Ames, Iowa: Blackwell Pub., 2005.
Find full textBook chapters on the topic "Food – Sensory evaluation – Statistical methods"
Lawless, Harry T., and Hildegarde Heymann. "Time-Intensity Methods." In Sensory Evaluation of Food, 265–300. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-7843-7_8.
Full textLawless, Harry T., and Hildegarde Heymann. "Qualitative Consumer Research Methods." In Sensory Evaluation of Food, 519–47. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-7843-7_15.
Full textResurreccion, A. V. A. "Sensory Evaluation Methods to Measure Quality of Frozen Food." In Quality in Frozen Foods, 357–76. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5975-7_18.
Full textPagès, Jérôme, and François Husson. "Multiple factor analysis: Presentation of the method using sensory data." In Mathematical and Statistical Methods in Food Science and Technology, 87–102. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118434635.ch06.
Full textPagès, Jérôme, and François Husson. "Multiple factor analysis: Presentation of the method using sensory data." In Mathematical and Statistical Methods in Food Science and Technology, 87–102. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118434635.ch6.
Full textMorgan, Lynette. "Greenhouse produce quality and assessment." In Hydroponics and protected cultivation: a practical guide, 246–67. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0246.
Full textMorgan, Lynette. "Greenhouse produce quality and assessment." In Hydroponics and protected cultivation: a practical guide, 246–67. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0013.
Full text"Basic Statistical Methods." In Sensory Evaluation Techniques, 391–440. CRC Press, 2015. http://dx.doi.org/10.1201/b19493-19.
Full text"Advanced Statistical Methods." In Sensory Evaluation Techniques, 441–98. CRC Press, 2015. http://dx.doi.org/10.1201/b19493-20.
Full text"Basic Statistical Methods." In Sensory Evaluation Techniques, 329–72. CRC Press, 2006. http://dx.doi.org/10.1201/b16452-17.
Full textConference papers on the topic "Food – Sensory evaluation – Statistical methods"
dos Anjos, Alexandre M., Romero Tori, Anderson Castro, Soares de Oliveira, and Fátima L. S. Nunes. "Statistical methods in the evaluation of sensory-motor skills acquisition in 3D interactive virtual environments." In SAC 2014: Symposium on Applied Computing. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2554850.2554985.
Full textRadulescu, Victorita. "New Method in Estimation of the Turbulent Drag for the Two-Phase of Fluid Flow Through Pipelines." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70236.
Full textReports on the topic "Food – Sensory evaluation – Statistical methods"
Treadwell, Jonathan R., James T. Reston, Benjamin Rouse, Joann Fontanarosa, Neha Patel, and Nikhil K. Mull. Automated-Entry Patient-Generated Health Data for Chronic Conditions: The Evidence on Health Outcomes. Agency for Healthcare Research and Quality (AHRQ), March 2021. http://dx.doi.org/10.23970/ahrqepctb38.
Full text