To see the other types of publications on this topic, follow the link: Force based impedance control.

Dissertations / Theses on the topic 'Force based impedance control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Force based impedance control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Wlassich, John J. (John James). "Nonlinear force feedback impedance control." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/15032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yanjun. "Impedance control without force sensors with application in homecare robotics." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/51174.

Full text
Abstract:
This thesis addresses the problem of interaction control between robot manipulator and the manipulated object in a homecare project. This project aims to use homecare robots at the elderly or disabled people’s home to provide necessary aid and assistance. The robot manipulator is to be operated in autonomous mode or teleoperation mode. The possible first aid or assistance requires direct interaction between the remote side robot manipulator and the human body. To guarantee the compliant interaction between the manipulator and the human body, impedance control was applied. In impedance control, neither the force nor the actual motion of the manipulator is controlled. The dynamic relationship between the interaction force and the resulting motion is controlled so that the interaction force will be monitored and kept at an acceptable range. To shape the mechanical impedance to any desired value as we wish, the remote side interaction force sensing is required. The interaction force could be sensed by a force sensor. Force sensors have a lot of inherent limitations such as narrow bandwidth, sensing noise, and high cost. To avoid a force sensor due to its limitations, sliding mode observers will be applied to estimate the interaction force. The estimated interaction force will be used in the impedance control algorithms. The observer and controller framework will be formulated and the solvability will be discussed thoroughly. In addition, the proposed approach will be compared with some available approaches to show its advantages over others. Bilateral impedance control will be applied in a teleoperation system. The master side impedance controller is to ensure the robust stability of the teleoperation system. The remote slave side impedance controller is used so that the interaction force will be monitored and kept at some acceptable range. Desired impedance parameters selection will be discussed considering the compromise between robust stability and performance. Also, in order to deal with the uncertainties in operator and environment dynamics, a robust performance guaranteed controller synthesis approach will be proposed. Gain-scheduling control could guarantee the stability and the robust performance under those uncertainties.<br>Applied Science, Faculty of<br>Mechanical Engineering, Department of<br>Graduate
APA, Harvard, Vancouver, ISO, and other styles
3

Ali, Akbar Khayyat Amir. "Force tracking of hydraulic manipulators within an impedance control framework." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ57501.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hara, Susumu, Yoji Yamada, and Lee Suwoong. "Power-assist control switching from adaptive nonstationary servo control to force sensorless nonstationary impedance control." IEEE, 2009. http://hdl.handle.net/2237/13907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Isaksson, Robert. "Drilling with force feedback." Thesis, Linköping University, Automatic Control, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20897.

Full text
Abstract:
<p>Industrial robots have been used for a long time in the industry. Despite this thedevelopment of advanced force control system using industrial robots is relativelylimited. Using force controlled robot systems expands the possibility of what canbe done with industrial robots.Previously a force feedback system for a standard industrial robot from ABBhas been developed. The system is developed towards the aircraft industry, where amounted drill machine on the robot has to fulfill the requirements in robot drillingin aircraft structures. This thesis presents experimental results and improvementsof this industrial robot system. Mechanical modifications and tests of a new endeffector are analyzed.</p>
APA, Harvard, Vancouver, ISO, and other styles
6

Mohorcic, John Francis. "Pressure-based Impedance Control of a Pneumatic Actuator." Cleveland State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=csu1591188440286793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Neal, Jordan Downey. "Design and Control of a Cable-Driven Sectorial Rotary Actuator for Open-Loop Force Control." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/56958.

Full text
Abstract:
This thesis focuses on the detailed design, implementation, and testing of a unique high performance rotary actuator for use in a custom haptic force feedback device. This six degree of freedom (DoF) position input and three DoF force output haptic device is specifically designed to recreate force sensations with the goal of improving operator performance in remote or simulated environments. By upholding the strict design principles of an ideal force-source actuator, the developed actuator and consequently the haptic controller can successfully replicate forces accurately and realistically. In the comprehensive presentation of this design, numerous analytical tools are also developed and presented with the intention of them being resourceful in the design or improvement of other haptic actuators, specifically cable-driven force feedback designs. These tools which include a linear system model can be valuable not only in the development but in the control of cable-driven actuators. Due to the imposed design criteria, the developed 1.045 Nm (1.359 Nm peak) cable-driven sectorial rotary actuator exhibits numerous properties that are desired in an open-loop force controlled actuator. These properties include low inertia (6.53e-04 kgm^2), low perceived mass (0.102 kg), small torque resolution (3.84e-04 Nm), small position resolution (21.5 arcsec), and high bandwidth (300 Hz). Due to the efficient cable transmission the design is also backdrivable, isotropic, low friction, and zero backlash. As a result of these numerous intrinsic properties, a high fidelity force feedback haptic actuator was conceived and is presented in this thesis.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
8

Saeidpourazar, Reza. "Microcantilever-based force sensing, control and imaging." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1247509027/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wittenstein, Nikolaus Adrian. "Force Feedback for Reliable Robotic Door Opening." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/56584.

Full text
Abstract:
Opening a door is still a hard problem in robotics. Many robotic manipulators use open-loop position control to open doors, which reduces reusability and reliability in the face of slight differences or sensor errors. Many others use force feedback or impedance control but skip past the problem of grabbing the handle, which could lead to failures due to sensor errors. This research assumes that perception is faulty, and uses joint-level force feedback to probe the location of the door and its handle before attempting to open it. The resulting control strategy is at least 33% faster than the open-loop control system it replaces, and had an 83% success rate during testing in place of the previous method's 60% success rate.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
10

West, Jerry. "Orthoplanar Spring Based Compliant Force/Torque Sensor for Robot Force Control." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6637.

Full text
Abstract:
A compliant force/torque sensor for robot force control has been developed. This thesis presents methods of designing, testing, and implementing the sensor on a robotic system. The sensor uses an orthoplanar spring equipped with Hall-effect sensors to measure one component of force and two moment components. Its unique design allows for simple and cost effective manufacturing, high reliability, and compactness. The device may be used in applications where a robot must control contact forces with its environment, such as in surface cleaning tasks, manipulating doors, and removing threaded fasteners. The compliant design of the sensor improves force control performance and reduces impact forces. Sensor design considerations are discussed, followed by a discussion of the proposed design concept. Theoretical compliance and stress analysis of the orthoplanar spring is presented that allows for rapid design calculations; these calculations are validated via finite element analysis. A mechanical design method is given which uses the results of the compliance and stress analysis. Transducer design is then addressed by developing a model of the sensor. The design methods are used to design a prototype sensor which is tested to determine its instrument uncertainty. Finally, the sensor is implemented on a robotic platform to test its performance in force control.
APA, Harvard, Vancouver, ISO, and other styles
11

Kikuue, Ryo. "Impedance Perception of Robots and Skill Transfer to Humans Based on Position and Force Information." 京都大学 (Kyoto University), 2003. http://hdl.handle.net/2433/148528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

David, Giacomo. "Static and dynamic forces accuracy of a Lightweight Collaborative Robot through impedance control." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25461/.

Full text
Abstract:
Industry 4.0 has become established, arousing the great interest of curiosities and fears for the impact not yet recognized. Human-robot collaboration is also being given more emphasis since collaborative robots improve safety and flexibility. However, not for all possible applications, the great initial economic effort of these machines may pay off expectations. This dissertation aims to give useful measurements performed on a KUKA LBR iiwa, an advanced collaborative robot. By executing particular tasks, like polishing, it has been noticed that Cartesian forces reconstructed by the robot are not always such accurate as assured by the manufacturer. The goal of this thesis is to compare the measured force by the robot torque sensors with the force measured by an external load cell. The focus is on the Z-axis force, considered the most relevant for the applications considered. For this reason, a commercial mono-axial load cell has been used. In these experiments, both static and dynamic forces were treat.
APA, Harvard, Vancouver, ISO, and other styles
13

Gondokaryono, Radian A. "Cooperative Object Manipulation with Force Tracking on the da Vinci Research Kit." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1262.

Full text
Abstract:
The da Vinci Surgical System is one of the most established robot-assisted surgery device commended for its dexterity and ergonomics in minimally invasive surgery. Conversely, it inherits disadvantages which are lack of autonomy and haptic feedback. In order to address these issues, this work proposes an industry-inspired solution to the field of force control in medical robotics. This approach contributes to shared autonomy by developing a controller for cooperative object manipulation with force tracking utilizing available manipulators and force feedback. To achieve simultaneous position and force tracking of the object, master and slave manipulators were assigned then controlled with Cartesian position control and impedance control respectively. Because impedance control requires a model-based feedforward compensation, we identified the lumped base parameters of mass, inertias, and frictions of a three degree-of-freedom double four-bar linkage mechanism with least squares and weighted least squares regression methods. Additionally, semidefinite programming was used to constrain the parameters to a feasible physical solution in standard parameter space. Robust stick-slip static friction compensation was applied where linear Viscous and Coulomb friction was inadequate in modeling the prismatic third joint. The Robot Operating System based controller was tested in RViz to check the cooperative kinematics of up to three manipulators. Additionally, simulation with the dynamic engine Gazebo verified the cooperative controller applying a constant tension force on a massless spring-damper virtual object. With adequate model feedback linearization, the cooperative impedance controller tested on the da Vinci Research Kit yielded stable tension force tracking while simultaneously moving in Cartesian space. The maximum force tracking error was +/- 0.5 N for both a compliant and stiff manipulated object.
APA, Harvard, Vancouver, ISO, and other styles
14

Hancock, Philip Jackson. "Adaptive Torque Control of a Novel 3D-Printed Humanoid Leg." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99408.

Full text
Abstract:
In order to function safely in a dynamic environment with humans and obstacles, robots require active compliance control with force feedback. In these applications the control law typically includes full dynamics compensation to decouple the joints and cancel out nonlinearities, for which a high-fidelity model of the robot is required. In the case of a 3D-printed robot, components cannot be easily modeled due non-uniform densities, inconsistencies among the 3D printers used in manufacturing, and the use of different plastics with mechanical properties that are not widely known. To address this issue, this thesis presents an adaptive control framework which modifies the model parameters online in order to achieve satisfactory tracking performance. The inertial properties are estimated by adapting with respect to functions of the unknown parameters. This is achieved by rewriting the robot dynamics equations as the product of a matrix of known nonlinear functions of the joint states and a vector of constant unknowns. The result is a nonlinear system linearly parameterized in terms of the of the unknowns, which can be estimated using adaptation laws derived from Lyapunov stability theory. The proposed control system consists of an outer-loop impedance controller to regulate deviations from the nominal trajectory in the presence of disturbances, and an inner-loop force controller to track the joint torques commanded by the outer-loop. The proposed system is evaluated on an early prototype consisting of a 3DOF leg, and two actuator test setups for the low-level controller.<br>Master of Science<br>In order to function safely in a dynamic environment with humans and obstacles, a robot must be able to actively control its interaction forces with the outside environment. In these applications a high-fidelity model of the robot is required. In the case of a 3D-printed robot, the components in the robot cannot be easily modeled due non-uniform densities, inconsistencies among the 3D printers used in manufacturing, and the use of different plastics with mechanical properties that are not widely known. To address this issue, this thesis presents an adaptive control framework which actively modifies the model parameters in order to achieve satisfactory tracking performance. In this work, the equations of motion of the robot are manipulated in such a way that the unknown quantities are separated from the known quantities. The unknowns are updated in real time using adaptive laws derived from Lyapunov stability theory. The proposed control system consists of a high-level torque controller to regulate deviations from the nominal trajectory, and a low-level force controller to track the joint torques commanded at the high-level. The proposed system is evaluated on an early prototype of the robot consisting of a 3 degree of freedom leg, and two actuator test setups for the low-level controller.
APA, Harvard, Vancouver, ISO, and other styles
15

Inagaki, Shinkichi, Tatsuya Suzuki, and Takahiro Ito. "Design of man-machine cooperative nonholonomic two-wheeled vehicle based on impedance control and time-state control." IEEE, 2009. http://hdl.handle.net/2237/13978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zhang, Zhongkai. "Vision-based calibration, position control and force sensing for soft robots." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I001/document.

Full text
Abstract:
La modélisation de robots souples est extrêmement difficile, à cause notamment du nombre théoriquement infini des degrés de liberté. Cette difficulté est accentuée lorsque les robots ont des configurations complexes. Ce problème de modélisation entraîne de nouveaux défis pour la calibration et la conception des commandes des robots, mais également de nouvelles opportunités avec de nouvelles stratégies de détection de force possibles. Cette thèse a pour objectif de proposer des solutions nouvelles et générales utilisant la modélisation et la vision. La thèse présente dans un premier temps un modèle cinématique à temps discret pour les robots souples reposant sur la méthode des éléments finis (FEM) en temps réel. Ensuite, une méthode de calibration basée sur la vision du système de capteur-robot et des actionneurs est étudiée. Deux contrôleurs de position en boucle fermée sont conçus. En outre, pour traiter le problème de la perte d'image, une stratégie de commande commutable est proposée en combinant à la fois le contrôleur à boucle ouverte et le contrôleur à boucle fermée. Deux méthodes (avec et sans marqueur(s)) de détection de force externe pour les robots déformables sont proposées. L'approche est basée sur la fusion de mesures basées sur la vision et le modèle par FEM. En utilisant les deux méthodes, il est possible d'estimer non seulement les intensités, mais également l'emplacement des forces externes. Enfin, nous proposons une application concrète : un robot cathéter dont la flexion à l'extrémité est piloté par des câbles. Le robot est contrôlé par une stratégie de contrôle découplée qui permet de contrôler l’insertion et la flexion indépendamment, tout en se basant sur un modèle FEM<br>The modeling of soft robots which have, theoretically, infinite degrees of freedom, are extremely difficult especially when the robots have complex configurations. This difficulty of modeling leads to new challenges for the calibration and the control design of the robots, but also new opportunities with possible new force sensing strategies. This dissertation aims to provide new and general solutions using modeling and vision. The thesis at first presents a discrete-time kinematic model for soft robots based on the real-time Finite Element (FE) method. Then, a vision-based simultaneous calibration of sensor-robot system and actuators is investigated. Two closed-loop position controllers are designed. Besides, to deal with the problem of image feature loss, a switched control strategy is proposed by combining both the open-loop controller and the closed-loop controller. Using soft robot itself as a force sensor is available due to the deformable feature of soft structures. Two methods (marker-based and marker-free) of external force sensing for soft robots are proposed based on the fusion of vision-based measurements and FE model. Using both methods, not only the intensities but also the locations of the external forces can be estimated.As a specific application, a cable-driven continuum catheter robot through contacts is modeled based on FE method. Then, the robot is controlled by a decoupled control strategy which allows to control insertion and bending independently. Both the control inputs and the contact forces along the entire catheter can be computed by solving a quadratic programming (QP) problem with a linear complementarity constraint (QPCC)
APA, Harvard, Vancouver, ISO, and other styles
17

Tufail, Muhammad. "Haptic teleoperation with impedance control based on learned inverse dynamics with application in homecare robotics." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/55896.

Full text
Abstract:
Bilateral teleoperation allows a human operator to interact with a remote environment using the superior actuation and sensing skills of a robot and the unmatched cognitive skills of a human operator. It has shown promising results in applications such as telemedicine, telesurgery, and access to hazardous or remote environments. In all of these applications, the robot has to co-exist with humans and other delicate objects in the environment and therefore has to behave in a compliant (“soft”) manner. Moreover, in order to improve the task performance, the interaction force must be fed back to the operator to feel. In this backdrop, the present thesis focuses on the application of bilateral teleoperation in a homecare environment. In view of the underlying challenges involved with bilateral teleoperation, this dissertation focuses on the development of a complete teleoperation system that can effectively perform in real-time. A primary objective here is to use the impedance control approach to design local controllers for master and slave manipulators where the dynamic relationship between the applied forces and the resulting positions of the manipulators during interaction, is controlled. Impedance control requires the identification of the robot inverse dynamic model that can be computed in real-time and can adapt to changes in the actual dynamics of the robot. A complete data-driven learning-based technique called Locally Weighted Projection Regression (LWPR) is therefore used, which does not assume any a-priori knowledge of the inertial parameters of the robot. Performance of the system is improved by using online estimation of impedance of the unknown environment with which the slave manipulator interacts. A method of admittance control is designed. This method overcomes the shortcomings of the standard impedance control, as observed during experimentation. In the end, a method is developed to improve the transparency and position synchronization of the popular approach of wave-variables, which ensures stability under time delay that is induced by the communication channel during the exchange of information between the master and the slave ends. The effectiveness of the present developments is validated in an environment of homecare robotics, through simulation and experimentation, and the results are discussed.<br>Applied Science, Faculty of<br>Mechanical Engineering, Department of<br>Graduate
APA, Harvard, Vancouver, ISO, and other styles
18

Wen, Kang. "Model based impedance control for haptic interface development using hardware-in-the-loop experimental setup." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26805.

Full text
Abstract:
Haptic interfacing provides the means through which human operators can interact with virtual environments. A haptic interface contains software simulated virtual environments, controllers and haptic devices. Impedance control is investigated in this thesis from the viewpoint of suitability for haptic interface development. The difference between conventional application of impedance control in robot motion control and its application in haptic interface development is also investigated. A model based impedance control methodology was developed for haptic controller design and proved feasible for defining the interaction between a human operator and a virtual environment. The factors that could have effects to the performance of a haptic interface were also investigated experimentally using parametric studies. The investigation was carried out on a HIL (Hardware-In-the-Loop) experimental setup, which combines the real hardware and mathematically simulated components. This HIL experimental set up can be used as a generic platform for the development and testing haptic interface options before prototypes are built.
APA, Harvard, Vancouver, ISO, and other styles
19

Deng, Kangfa, Gerald Gerlach, and Margarita Guenther. "Force-compensated hydrogel-based pH sensor." SPIE, 2015. https://tud.qucosa.de/id/qucosa%3A35185.

Full text
Abstract:
This paper presents the design, simulation, assembly and testing of a force-compensated hydrogel-based pH sensor. In the conventional deflection method, a piezoresistive pressure sensor is used as a chemical-mechanical-electronic transducer to measure the volume change of a pH-sensitive hydrogel. In this compensation method, the pH-sensitive hydrogel keeps its volume constant during the whole measuring process, independent of applied pH value. In order to maintain a balanced state, an additional thermal actuator is integrated into the close-loop sensor system with higher precision and faster dynamic response. Poly (N-isopropylacrylamide) (PNIPAAm) with 5 mol% monomer 3-acrylamido propionic acid (AAmPA) is used as the temperature-sensitive hydrogel, while poly (vinyl alcohol) with poly (acrylic acid) (PAA) serves as the pH-sensitive hydrogel. A thermal simulation is introduced to assess the temperature distribution of the whole microsystem, especially the temperature influence on both hydrogels. Following tests are detailed to verify the working functions of a sensor based on pH-sensitive hydrogel and an actuator based on temperature-sensitive hydrogel. A miniaturized prototype is assembled and investigated in deionized water: the response time amounts to about 25 min, just half of that one of a sensor based on the conventional deflection method. The results confirm the applicability of the compensation method to the hydrogel-based sensors.
APA, Harvard, Vancouver, ISO, and other styles
20

Unsal, Memet. "Force control of a new semi-active pieozoelectric-based [sic] friction damper." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1001189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Luzi, Luca <1988&gt. "A new overconstrained Gough-Stewart platform-based manipulator operating under force control." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amsdottorato.unibo.it/9025/3/Luzi_Luca_tesi.pdf.

Full text
Abstract:
In vitro tests are essential to better understand the human joint behavior and to design more accurate prostheses and orthoses. In the literature, several test rigs have been presented that can be used to characterize the human joints for specific applications but poorly fit into the study when more general conditions are required. In 2014 the Group of Robotics, Automation and articular Biomechanics (GRAB) of the University of Bologna built an in vitro test rig that overcame these limitations. Even though the machine is capable to work with high accuracy, some improvements can be done in order to reduce the test time and simplify certain operations. Therefore, recently GRAB started the design of a new in vitro test rig, which can be regarded as an evolution of the previous one. The test rig comprises a number of subsystems one of which is the loading system that represents the core of the machine. In particular, this work presents a new manipulator whose features make it suitable as loading system for the new test rig. The new manipulator is an overconstrained Gough-Stewart platform-based robot. This property is useful since it makes it possible to realize a six degrees-of-freedom manipulator with a smaller number of joints and a higher stiffness with respect to a standard Gough-Stewart manipulator of the same size. Moreover, the manipulator does not require spherical joints and thrust journal bearings, thus allowing a larger workspace and simplifying the physical realization of the manipulator. The geometrical characteristics of the manipulator are shown, and the kinematic analysis is presented. A solution for the position analysis is proposed and the Jacobin matrix is derived. Furthermore, a singularity and workspace numerical analyses are presented. The geometrical interpretation of the singularities is provided.
APA, Harvard, Vancouver, ISO, and other styles
22

Piyasinghe, Lakshan Prageeth. "Dynamic Phasor Based Analysis and Control in Renewable Energy Integration." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/6015.

Full text
Abstract:
The objective of this dissertation is to carry out dynamic modeling, analysis and control of power systems with Renewable Energy Sources (RES) such as: Photovoltaic (PV) power sources and wind farms. The dissertation work is mainly focused on microgrid since it plays a major role in modern power systems and tend to have higher renewable power penetration. Two main theoretical concepts, dynamic phasor and impedance modeling have been adopted to model and analyze the power systems/mocrogrids with RES. The initial state calculation which is essential for small signal analysis of a system is carried out as the first step of the dissertation work. Dynamic phasor and impedance modeling techniques have been utilized to model and analyze power systems/micogrids as the second phase of the work. This part consists of two main studies. First case investigates the impedance modeling of Thyristor Controller Series Capacitor (TCSC) for sub-synchronous resonance (SSR) analysis where a wind farm is connected to a power system through series compensated line. Second case utilizes the dynamic phasor concept to model a microgrid in unbalanced condition. Here the unbalance is caused by a single phase PV connected to the microgrid. Third Phase of the dissertation work includes upper level control of the microgrid. Here prediction and optimization control for a microgrid with a wind farm, a PV system, an energy storage system and loads is evaluated. The last part of the dissertation work focuses on real time modeling and hardware in loop simulation test bed for microgrid applications. This dissertation has led to four journal papers (three accepted, one submitted) and five conference papers.
APA, Harvard, Vancouver, ISO, and other styles
23

Flemmer, Henrik. "Control Design and Performance Analysis of force Reflective Teleoperators - A Passivity Based Approach." Doctoral thesis, KTH, Machine Design, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3795.

Full text
Abstract:
<p>In this thesis, the problem of controlling a surgical masterand slave system with force reflection is studied. The problemof stiff contacts between the slave and the environment isgiven specific attention. The work has been carried out at KTHbased on an initial cooperation with Karolinska Sjukhuset. Theaim of the over all project is to study the possibilities forintroduction of a force reflective teleoperator in neurologicalskullbase operations for the particular task of bone millingand thereby, hopefully, increase patient safety, decreasesurgeon workload and cost forthe society.</p><p>The main contributions of this thesis are:</p><p>Derivation of a dynamical model of the master andoperator’s finger system and, experimental identificationof ranges on model parameter values. Based on this model, theinteraction channel controllers optimized for transparency arederived and modified to avoid the influence of the uncertainmodel parameters. This results in a three channel structure. Todecrease the influence of the uncertain parameters locally atthe master, a control loop is designed such that the frequencyresponse of the reflected force is relatively unaffected by theuncertainties, a result also confirmed in a transparencyanalysis based on the H-matrix. The developed teleoperatorcontrol structure is tested in experiments where the operatorcould alter the contact force without facing any problems aslong as the slave is in contact with the environment.</p><p>As a result of the severe difficulties for the teleoperatorto move from free space motion to in-contact manipulationwithout oscillative behaviour, a new detection algorithm basedon passivity theory is developed. The algorithm is able todetect the non-passive behaviour of the actual teleoperatorinduced by the discrete change in system dynamics occurring atthe contact instant. A stabilization controller to be activatedby the detection algorithm is designed and implemented on themaster side of the teleoperator. The detection algorithm andthe stabilization controller are shown highly effective in realexperiments.</p><p>All major research results presented in the thesis have beenverified experimentally.</p><p><b>Keywords</b>Teleoperator, Force Feedback, Passivity, StiffContacts, Control, Robustness, Transparency, Bone Milling,Uncertainty</p>
APA, Harvard, Vancouver, ISO, and other styles
24

Masacioglu, Mustafa, and Marlon McBride. "Control Based Mobile Ad Hoc Networking for survivable, dynamic, mobile Special Operation Force communications." Thesis, Monterey, California: Naval Postgraduate School, 2009. http://hdl.handle.net/10945/4592.

Full text
Abstract:
Approved for public release, distribution unlimited<br>In the next generation of wireless communication systems, there will be a need for the rapid deployment of independent mobile users. Significant examples include establishing survivable, efficient, dynamic mobile communication for tactical Special Operation Force (SOF) networks, as well as SOF units that are ad hoc networking with first responders conducting emergency/rescue and disaster relief operations. Such network scenarios cannot rely on centralized and organized connectivity, and should instead employ applications of newly developing Control Based Mobile Ad Hoc Networking (CBMANET). In a CBMANET environment, an autonomous collection of mobile users communicate over relatively bandwidth constrained wireless links by taking benefit of nodes mobility and topology control in combination with mobile platform switching. The network is decentralized. All network activity, including discovering the topology and delivering messages, must be executed by the nodes themselves (i.e., routing functionality will be incorporated into mobile nodes). Harnessing the tremendous flexibility and efficiency of CBMANET would allow for better control and protection of ad hoc mobile networks. Therefore, we need to work tirelessly to improve our capabilities in the three aforementioned control spaces.
APA, Harvard, Vancouver, ISO, and other styles
25

Ahmadkhanlou, Farzad. "Design, Modeling And Control Of Magnetorheological Fluid-Based Force Feedback Dampers For Telerobotic Systems." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1212419874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Barawkar, Shraddha. "Collaborative Transportation of a Common Payload using Two UAVs Based on Force Feedback Control." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1505125636211596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

McBride, Marlon Masacioglu Mustafa. "Control Based Mobile Ad Hoc Networking for survivable, dynamic, mobile Special Operation Force communications." Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep%5FMcBride.pdf.

Full text
Abstract:
Thesis (M.S. in Information Technology Management)--Naval Postgraduate School, September 2009.<br>Thesis Advisor(s): Bordetsky, Alex. "September 2009." Description based on title screen as viewed on November 5, 2009. Author(s) subject terms: Control Based Mobile Ad Hoc Networking, CBMANET, MANET, Routing Protocol, Wireless Network Includes bibliographical references (p. 67-72). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
28

Lopes, da Frota Moreira Pedro. "Model based force control for soft tissue interaction and applications in physiological motion compensation." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20179/document.

Full text
Abstract:
L'introduction de systèmes robotisés dans les salles opératoires a fait évoluer la chirurgie moderne, ouvrant aux chirurgiens de nouvelles possibilités. La présence de tels systèmes en salle opératoire croît chaque année. Les progrès des robots médicaux sont étroitement liés au développement de nouvelles techniques permettant de mieux contrôler les interactions entre la machine et les tissus biologiques. L'objectif principal de cette thèse est de proposer une commande en force basée sur un modèle, conçue pour améliorer la stabilité et la robustesse du contrôle en vue d'applications médicales. Une étude sur la modélisation des tissus mous ainsi que le choix d'un modèle compatible temps-réel sont présentés. Après cette analyse, le modèle de Kelvin Boltzmann a été choisi et implémenté dans le schéma de contrôle en force proposé, basé sur des observateurs actifs. La stabilité et la robustesse de la commande sont analysées en théorie et au travers d'expérimentations. Les performances de la commande en force sont également mesurées, en tenant compte des perturbations dues aux mouvements physiologiques. Finalement, afin d'améliorer la qualité du rejet des perturbations, une boucle de commande supplémentaire est ajoutée au moyen d'une estimation des perturbations basée sur le modèle de Kelvin Boltzmann et des séries de Fourier<br>The introduction of robotic systems inside the operating room has changed the modern surgery, opening new possibilities to surgeons. The number of robotic systems inside the operation room is increasing every year. The progress of medical robots are associated to the development of new techniques to better control the interaction between the robot and living soft tissues. This thesis focus on the development of a model based force control designed to improve stability and robustness of force control addressed to medical applications. A study of soft tissue modeling is presented and a suitable model to be used in a real-time control is selected. After the analysis, the Kelvin Boltzmann model was chosen to be inserted in the proposed force control scheme based on Active Observers. Stability and robustness are theoretically and experimentally analyzed. The performance of the proposed force control is also investigated under physiological motion disturbances. At the end, to improve the disturbance rejection capability, an extra control loop is added using a disturbance estimation based on the Kelvin Boltzmann model and a Fourier series
APA, Harvard, Vancouver, ISO, and other styles
29

Wu, Ying. "Inversion-based feedforward-feedback control theory and implementation to high-speed atomic force microscope imaging /." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3396982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Iglesias, José. "A force control based strategy for extrinsic in-hand object manipulation through prehensile-pushing primitives." Thesis, KTH, Robotik, perception och lärande, RPL, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-220136.

Full text
Abstract:
Object manipulation is a complex task for robots. It often implies a compromise between the degrees-of-freedom of hand and its fingers have (dexterity) and its cost and complexity in terms of control. One strategy to increase the dexterity of robotic hands with low dexterity is called extrinsic manipulation and its principle is to exploit additional accelerations on the object caused by the effect of external forces. We propose a force control based method for performing extrinsic in-hand object manipulation, with force-torque feedback. For this purpose, we use a prehensile pushing action, which consists of pushing the object against an external surface, under quasistatic assumptions. By using a control strategy, we also achieve robustness to parameter uncertainty (such as friction) and perturbations, that are not completely captured by mathematical models of the system. The force control strategy is performed in two different ways: the contact force generated by the interaction between the object and the external surface is controlled using an admittance controller, while an additional control of gripping force applied by the gripper on the object is done through a PI controller. A Kalman filter is used for the estimation of the state of the object, based on force-torque measurements of a sensor at the wrist of the robot. We validate our approach by conducting experiments on a PR2 robot, available at the Robotics, Perception, and Learning lab at KTH Royal Institute of Technology.<br>Att greppa och manipulera objekt är en komplex uppgift för robotar. Det innebär ofta en kompromiss mellan hand och fingrars frihetsgrader (fingerfärdighet) mot reglersystemets kostnad och komplexitet. Extrinsic manipulation är en strategi för att öka fingerfärdigheten hos robothänder, och dess princip är att utnyttja accelerationer på objektet som orsakas av yttre krafter. Vi föreslår en metod baserad på att reglerakraft för hantering av objekt i handen, genom en återkoppling av kraftmomentet. För detta ändamål använder vi en prehensile pushing action, där objektet puttas mot en yta, under kvasistiska antaganden. Genom att använda en reglerstrategi får vi en robusthet mot parametrars osäkerhet (som friktion) och störningar, vilka inte beskrivs av systemets model. Kraftkontrollstrategin utförs på två olika sätt: kraften mellan objektet och den yttre ytan styrs med en admittance controller medan en ytterligare styrning av applicerad gripkraft på objektet görs med en PI-reglerare. Ett Kalman filter används för att estimera objektets tillstånd, baserat på mätningar av kraftmoment via en sensor vid robotens handled. Vi utvärderar vårt tillvägagångssätt genom att utföraexperiment på en PR2-robot vid KTHs Robotics, Perception och Learning Lab.
APA, Harvard, Vancouver, ISO, and other styles
31

Ma, Zhiyao (Zhiyao John). "Current-based force input / output control for novel haptic interaction using the inFORCE shape display." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119566.

Full text
Abstract:
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.<br>This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 54-57).<br>Shape changing interfaces have been become influential in the field of human-computer interaction. Their purpose is to give digital data a physical and tangible form, allowing for richer depths of interaction. However, though shape changing interfaces have generally been excellent in allowing digital data to take a tangible form, they have yet been unable to simulate many sorts of higher dimensions of the data. We propose inFORCE as an extension upon current generation shape displays. inFORCE is a force-responsive shape display with the ability for force input and output. This force-responsive capability opens up novel and exciting methods of haptic interaction. We developed a current-based force-sensing method using inFORCE without the use of force sensors. With this, we develop various applications of the inFORCE system, including object materiality emulation, multi-dimensional data representation, musical instrument simulation, and more. Lastly, we provide a framework for the flexible development of new applications using the inFORCE system.<br>by Zhiyao (John) Ma.<br>M. Eng.
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Xin. "Online health monitoring of photovoltaic panels by converter-based impedance spectroscopy." Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0039_WANG.pdf.

Full text
Abstract:
Pour répondre aux besoins énergétiques croissants à travers le monde et dans un objectif de développement durable, l'utilisation de l'énergie solaire entraine une augmentation significative de l'installation de panneaux photovoltaïques (PV) permettant une production d'électricité propre et renouvelable. Cependant, les panneaux PV sont susceptibles de présenter des défauts dus aux menaces environnementales, aux facteurs humains ou à des périodes de fonctionnement prolongées. Ces défauts peuvent entraîner des pertes de puissance, une faible efficacité, une instabilité du système et présenter un risque de sécurité. La surveillance de l'état de santé peut atténuer ces problèmes et améliorer la fiabilité globale et l'efficacité de fonctionnement des panneaux PV. Parmi les outils de surveillance de l'état de santé existants pour les panneaux PV, la spectroscopie d'impédance (IS) offre un moyen puissant et non destructif d'acquérir l'impédance interne des panneaux PV sur une large plage de fréquences. L'IS basée sur le convertisseur peut aider à réduire les coûts globaux du système et à faciliter les applications en ligne, car aucun équipement supplémentaire n'est nécessaire. Cependant, la stratégie de contrôle du convertisseur doit être spécifiquement conçue. Tout d'abord, étant donné que l'injection du signal de perturbation est réalisée en contrôlant les signaux de commutation, la largeur de bande du convertisseur limitera la fréquence maximale du signal de perturbation. Obtenir un spectre IS complet avec une précision suffisante peut donc être un défi. Deuxièmement, pour garantir une puissance de sortie quasi maximale des panneaux PV même pendant la mise en œuvre de l'IS, un schéma de contrôle coopératif entre le suivi du point de puissance maximale (MPPT) et le mode IS doit être envisagé. Une stratégie de contrôle à deux niveaux du convertisseur. Le contrôle de niveau supérieur réalise le contrôle coopératif des différents modes de fonctionnement, notamment les modes MPPT, de suivi du point d'injection et IS. Le contrôle de niveau inférieur comprend le contrôle séparé de chaque mode. En particulier, pour le mode IS, les contrôles en boucle ouverte et en boucle fermée ont été étudiés et comparés systématiquement. Sous le contrôle en boucle ouverte, une analyse de la résonance intrinsèque du convertisseur et de la limitation de fréquence du signal de perturbation est effectuée. De plus, une méthode de configuration adaptative pour l'amplitude du rapport cyclique en courant alternatif est proposée pour éliminer l'influence de la résonance et améliorer la validité et la précision de la mesure IS. Sous le contrôle en boucle fermée, basé sur trois contrôleurs de compensation couramment utilisés en contrôle linéaire de systèmes, deux méthodes de contrôle, appelées contrôle unifié et contrôle séparer, sont conçues et comparées. Dans le contrôle unifié, un seul contrôleur proportionnel-intégral régule les composantes CC et CA ensemble pour atteindre les objectifs de contrôle. Dans le contrôle séparé, un filtre passe-bas segmenté est conçu. Un contrôleur proportionnel et un contrôleur quasi-proportionnel résonant sont ensuite appliqués séparément pour contrôler la composante CA. Basée sur les mesures IS acquises, un AC-ECM simplifié du panneau PV est proposé. Cet AC-ECM offre une approche d'ajustement pour le spectre incomplet obtenu par le biais de l'IS basée sur le convertisseur. De plus, quatre caractéristiques de l'état de santé sont extraites et définies pour surveiller les états de santé du panneau PV dans diverses conditions de fonctionnement. Enfin, une plateforme expérimentale a été développée. Une étude expérimentale a été menée pour vérifier que sous les stratégies peuvent être obtenues. Dans diverses conditions de fonctionnement, l'efficacité de la méthode de surveillance IS en ligne basée sur les caractéristiques extraites du panneau PV est également vérifiée<br>To meet the world's growing energy needs and with a view to sustainable development, the use of solar energy is leading a significant increase in the installation of photovoltaic (PV) panels, enabling the production of clean and renewable electricity. However, the PV panels are susceptible to faults during operating. These faults can result in power losses, low efficiency, system instability, even pose a risk of security. Health monitoring can mitigate these issues and improve the overall operating reliability and efficiency of PV panels. Among existing health monitoring tools for PV panels, impedance spectroscopy (IS) provides a powerful, non-destructive way to acquire PV panels' internal impedance over a wide frequency range. Compared with specific workstation-based IS, converter-based IS can help reduce overall system costs and facilitate online applications, as no additional equipment is required. However, the control strategy of the power converter needs to be specifically designed. Firstly, the bandwidth of the converter will limit the maximum frequency of the perturbation signal. Obtaining a complete IS spectrum with sufficient accuracy can thus be challenging. Secondly, to ensure a quasi-maximum output power of PV panels even during IS implementation, a cooperative control scheme between maximum power point tracking (MPPT) and IS modes should be considered. The major objectives of this research are twofold: (1) to propose a systematic design guideline for control strategies of converter-based IS implementation; (2) to establish an appropriate AC equivalent circuit model (AC-ECM) for PV panels and extract valuable health indicators for online health monitoring of PV panels. In one aspect, a bi-level control strategy of the power converter including an upper-level and a lower-level control is proposed. The upper-level control achieves the cooperative control of different operating modes, including MPPT, injection point tracking (IPT) and IS modes. The lower-level control includes the separate control of each mode. Particularly, for the IS mode, both open-loop control and closed-loop control have been systematically studied and compared. Under open-loop control, an analysis of the intrinsic resonance of the converter and the frequency limitation of the perturbation signal is performed. Furthermore, an adaptive configuration method for the amplitude of the AC duty cycle is proposed to eliminate the influence of the resonance and enhance the accuracy of IS measurement. Under closed-loop control, based on three commonly used compensation controllers, two control methods, named unified control and separated control, are designed and compared. In the unified control, a single proportional-integral (PI) controller controls the DC and AC components together to meet the control objectives. Meanwhile, in the separated control, a segmented lower pass filter (LPF) with a variable cut-off frequency is designed to effectively separate the DC component of the PV panel current from the AC perturbation signal. A proportional (P) and a quasi-proportional resonant (QPR) are further applied separately to control the AC component. In the other aspect, based on the acquired IS measurements, a simplified AC-ECM of the PV panel is proposed. This AC-ECM offers a fitting approach for the incomplete spectrum obtained through converter-based IS. Additionally, four health features are extracted and defined for monitoring the health states of the PV panel under various operating conditions. Finally, an experimental platform has been developed for online IS implementation. An experimental study has been conducted to verify that under the proposed control strategies, reliable and accurate IS measurements can be achieved. Under various operating conditions, the effectiveness of the online IS monitoring method based on the extracted features of the PV panel is verified as well
APA, Harvard, Vancouver, ISO, and other styles
33

Leang, Kam K. "Iterative learning control of hysteresis in piezo-based nano-positioners : theory and application in atomic force microscopes /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/7127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

PEDONE, Salvatore. "Robust Control of Nonlinear Systems: An Unknown Input Observer Based Approach." Doctoral thesis, Università degli Studi di Palermo, 2023. https://hdl.handle.net/10447/580735.

Full text
Abstract:
Questa tesi propone un controllore robusto per sistemi non lineari tramite l'utilizzo di un osservatore ad ingressi sconosciuti. Attraverso un'opportuna riformulazione dinamica del modello, un generico sistema non lineare viene descritto come la somma di due funzioni, la prima lineare e nota e la seconda altamente non lineare e sconosciuta, derivante dalla conoscenza imperfetta del modello dinamico, dei parametri, o di eventuali disturbi esogeni agenti sul sistema etc., modellabili come perturbazioni (disturbi) della funzione lineare. Questa semplificazione consente una vantaggiosa descrizione dinamica del sistema in forma matriciale. Le informazioni necessarie sono stimate attraverso l'utilizzo di un osservatore ad ingressi sconosciuti a tempo discreto in grado di stimare asintoticamente sia lo stato del sistema che il disturbo al solo costo di qualche ritardo campionario. Infine, è realizzato un controllore che attivamente compensa il disturbo stimato e forza asintoticamente lo stato del sistema a quello desiderato. La tesi presenta inoltre la prova di stabilità in anello chiuso del metodo proposto. La soluzione proposta non necessita di informazioni a priori sulle dimensioni del disturbo, variabili aggiuntive per modellare le incertezze o parametri dell'osservatore da regolare. L' efficacia e la superiorità rispetto ai metodi esistenti è validata in teoria e in pratica in due modi diversi contesti: auto da corsa a guida autonoma e soft-robot articolati.<br>This thesis addresses the robust control of complex nonlinear system via an Unknown Input Observer based approach. More specifically, through a suitable model dynamic reformulation, a generic nonlinear system has been described as the sum of two functions, the first linear and known and the second highly nonlinear and unknown, resulting from imperfect knowledge of system model parameters, exogenous disturbances and so on, which can be seen as a perturbation (disturbance) of the linear function. This simplification allows an advantageous system dynamic description in matrix form. Subsequently, a discrete-time Delayed Unknown Input Observer has been designed to asymptotically estimate both system state and disturbance at the only cost of a few sample delay. Finally, a controller actively compensates the estimated disturbance and asymptotically steers the system state to the desired one. This thesis also presents a closed-loop stability proof of the method. The proposed solution advantageously needs no a-priori information about the total perturbation boundedness, additional variables to model uncertainties, or observer parameters to be tuned. Its effectiveness and superiority to existing methods are studied in theory and practice in two different contexts, i.e. self-driving racecars and articulated soft-robots.
APA, Harvard, Vancouver, ISO, and other styles
35

Bicen, Baris. "Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41065.

Full text
Abstract:
Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress or enhance the desired vibration modes of the diaphragm. This approach provides an electronic means to tailor the directional response of the microphones, with significant implications in device performance for various applications. As an example, the use of this device as a particle velocity sensor for sound intensity and sound power measurements is investigated. Without force feedback, the gradient microphone provides accurate particle velocity measurement for frequencies below 2 kHz, after which the pressure response of the second order mode becomes significant. With two-sided force feedback, the calculations show that this upper frequency limit may be increased to 10 kHz. This improves the pressure residual intensity index by more than 15 dB in the 50 Hz-10 kHz range, matching the Class I requirements of IEC 1043 standards for intensity probes without any need for multiple spacers.
APA, Harvard, Vancouver, ISO, and other styles
36

Ngan, Choi-chik, and 顔才績. "A hidden Markov model approach to force-based contact recognition for intelligent robotic assembly." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31243496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lee, Shay Liang. "Force protection via UGV-UVA collaboration development of control law for vision based target tracking on SUAV." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Dec%5FLee.pdf.

Full text
Abstract:
Thesis (M.S. in Mechanical Engineering and M.S. in Applied Physics)--Naval Postgraduate School, December 2007.<br>Thesis Advisor(s): Dobrokhodov, Vladimir N. ; Harkins, Richard. "December 2007." Description based on title screen as viewed on January 23, 2008. Includes bibliographical references (p. 49). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
38

Komati, Bilal. "Automated microassembly using an active microgripper with sensorized end-effectors and hybrid force / position control." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2066/document.

Full text
Abstract:
La thèse propose l’utilisation d’une pince active instrumentée en force pour automatiser l’assemblage des MOEMS 3D hybrides. Chacun des doigts de la pince instrumentée est composé d’un actionneur piézo-électrique et d’un capteur de force piézorésistif intégré. Le capteur de force intégré présente des performances innovantes par rapport aux capteurs existants dans l’ état de l’art. Cette pince offre la possibilité de mesurer les forces de serrage appliquées par la pince pour saisir un micro composant et d’estimer les forces de contact entre le micro composant et le substrat de micro-assemblage.Un modèle dynamique et non linéaire est développé pour la pince instrumentée. Une commande hybride force/position est utilisée pour automatiser le micro-assemblage. Dans cette commande, certains axes sont commandés en position et les autres sont commandés en force. Pour les axes commandés en force, une nouvelle commande fondée sur une commande en impédance avec suivi de référence est proposée selon un principe de commande non linéaire par mode glissant avec estimation des paramétres en lignes. En utilisant le schéma de commande hybride force/position proposé, une automatisation de toutes les tâches de micro-assemblage est réalisée avec succès, notamment sur un composant flexible à guider dans un rail<br>This work proposes the use of an active microgripper with sensorized end-effectors for the automationof the microassembly of 3D hybrid MOEMS. Each of the two fingers of the microgripper is composedof a piezoelectric actuator with an integrated piezoresistive force sensor. The integrated force sensorpresents innovative performances compared to the existing force sensors in literature. The forcesensors provide the ability to measure the gripping forces applied by the microgripper to grasp a microcomponentand estimated the contact forces between the microcomponent and the substrate ofmicroassembly. A dynamic nonlinear model of the microgripper is developed. A hybrid force/positioncontrol is used for the automation of the microassembly. In the hybrid force/position control formulation,some axes are controlled in position and others are controlled in force. For the force controlledaxes, a new nonlinear force control scheme based on force tracking sliding mode impedance controlis proposed with parameter estimation. Using the proposed hybrid force/position control scheme, fullautomation of the microassembly is performed, notably for the guiding of a flexible component in arail
APA, Harvard, Vancouver, ISO, and other styles
39

Sharma, Manoj Kumar. "Design and Fabrication of Intention Based Upper-Limb Exoskeleton." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1462290841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pradhan, Sarthak. "Design and Control of a Robotic Exoskeleton Glove Using a Neural Network Based Controller for Grasping Objects." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104663.

Full text
Abstract:
Patients suffering from brachial plexus injury or other spinal cord related injuries often lose their hand functionality. They need a device which can help them to perform day to day activities by restoring some form of functionality to their hands. A popular solution to this problem are robotic exoskeletons, mechanical devices that help in actuating the fingers of the patients, enabling them to grasp objects and perform other daily life activities. This thesis presents the design of a novel exoskeleton glove which is controlled by a neural network-based controller. The novel design of the glove consists of rigid double four-bar linkage mechanisms actuated through series elastic actuators (SEAs) by DC motors. It also contains a novel rotary series elastic actuator (RSEA) which uses a torsion spring to measure torque, passive abduction and adduction mechanisms, and an adjustable base. To make the exoskeleton glove grasp objects, it also needs to have a robust controller which can compute forces that needs to be applied through each finger to successfully grasp an object. The neural network is inspired from the way human hands can grasp a wide variety of objects with ease. Fingertip forces were recorded from a normal human grasping objects at different orientations. This data was used to train the neural network with a R2 value of 0.81. Once the grasp is initiated by the user, the neural network takes inputs like orientation, weight, and size of the object to estimate the force required in each of the five digits to grasp an object. These forces are then applied by the motors through the SEA and linkage mechanisms to successfully grasp an object autonomously.<br>Master of Science<br>Humans are one of the few species to have an opposable thumb which allows them to not only perform tasks which require power, but also tasks which require precision. However, unfortunately, thousands of people in the United States suffer from hand disabilities which hinder them in performing basic tasks. The RML glove v3 is a robotic exoskeleton glove which can help these patients in performing day to day activities like grasping semi-autonomously. The glove is lightweight and comfortable to use. The RML glove v3 uses a neural network based controller to predict the grasp force required to successfully grasp objects. After the user provides the required input, the glove estimates the object size and uses other inputs like object orientation and weight to estimate the grasp force in each finger linkage mechanism. The motors then drive the linkages till the required force is achieved on the fingertips and the grasp is completed.
APA, Harvard, Vancouver, ISO, and other styles
41

Ichikawa, Shinji, Mutuwo Tomita, Shinji Doki, and Shigeru Okuma. "Sensorless Control of Permanent-Magnet Synchronous Motors Using Online Parameter Identification Based on System Identification Theory." IEEE, 2006. http://hdl.handle.net/2237/9622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Seidler, Martin Florian Verfasser], Dirk [Akademischer Betreuer] [Abel, and Wolfgang [Akademischer Betreuer] Schröder. "Control and optimization of a Lorentz force based actuator system for external flow / Martin Florian Seidler ; Dirk Abel, Wolfgang Schröder." Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1228979812/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Long, Fei. "Three-Dimensional Motion Control and Dynamic Force Sensing of a Magnetically Propelled Micro Particle Using a Hexapole Magnetic Actuator." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1452093964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bafumba, Liseli Joël. "Design and control of a piezoelectric positioning systems, with high resolution, multiple degrees of freedom and an embedded measurement by self-sensing." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD017.

Full text
Abstract:
De nos jours, les systèmes intègrent de plus en plus de fonctionnalités dans des volumes de plus en plus petits grâce aux microcomposants intégrés. L'assemblage de ces microcomposants nécessite des systèmes de manipulation précis et reproductibles. Un nombre considérable de recherches ont été menées afin de mettre au point des actionneurs et des microrobots capables d'effectuer des tâches de positionnement ou de manipulation avec des précisions microniques voire submicroniques. Les technologies piézoélectriques jouent un rôle fondamental dans les applications de positionnement à résolution nanométrique ou même inférieure. Ces matériaux permettent la conception et le développement de systèmes de positionnement avec résolution et bande passante élevées. Cependant, des effets non linéaires tels que l'hystérésis et la dérive lente affectent la précision de la position des systèmes à base piézoélectrique s'ils ne sont pas contrôlés. Souvent, des capteurs de position sont montés sur ces systèmes pour permettre un contrôle en boucle fermée et l'élimination des effets d'hystérésis et de dérive lente. Néanmoins, l'intégration de capteurs permettant un asservissement robuste et de qualité pose des problèmes spécifiques aux microrobots. Cela est particulièrement vrai lorsque le nombre de degrés de liberté augmente. En effet, les capteurs de position qui jouissent d'une bonne résolution et précision sont généralement très volumineux et coûteux. Les solutions alternatives à l’intégration de capteurs de position externes peuvent être regroupées en deux catégories: soit par contrôle en boucle ouverte, également appelé schémas de contrôle prédictifs, soit par des techniques basées sur le contrôle par auto-détection (Self-Sensing Actuation - SSA), c’est-à-dire un contrôle en boucle fermée utilisant l'actionneur piézoélectrique comme son propre capteur.Dans cette thèse, l'objectif est de concevoir et de contrôler un système de positionnement basé sur la technologie piézoélectrique avec une méthode de mesure intégrée par SSA et ayant plusieurs degrés de liberté. À cette fin, les deux classes de SSA, à savoir le SSA basé sur l’effet direct piézoélectrique et le SSA basé sur la modification des propriétés électriques de l'actionneur piézoélectrique (PEA), sont étudiées en profondeur afin de déterminer celle qui convient le mieux au contrôle de la force et de la position dans les actionneurs piézoélectriques caractérisés par le fluage et non-linéarités d'hystérésis et consacrés à des opérations précises. De plus, cette étude présente un modèle constitutif et une technique d’identification de paramètres améliorés, qui prend en compte l’effet de couplage électromécanique et les non linéarités sur les propriétés du matériau piézoélectrique (constantes élastiques et diélectriques).Une nouvelle technique d'évaluation en temps réel des propriétés électriques du PEA est développée. Cette évaluation est basée sur la mesure de l’amplitude du courant de détection résultant de l’application d’une tension d’entrée haute fréquence de faible amplitude superposée à la tension d’entrée de commande qui actionne le PEA. Ensuite, un estimateur qui utilise le courant de détection pour estimer la position du PEA est conçu. Enfin, une plate-forme microrobotique pour le positionnement planaire à haute résolution avec la mesure intégrée par SSA développée est présentée<br>Currently, systems integrate more and more functionalities into smaller volumes thanks to embedded micro-components. The assembly of those components requires precise and repeatable systems of manipulation. Substantial amounts of research have been carried out for developing actuators and microrobots to perform positioning or manipulation with micron- or even submicron accuracies. Piezoelectric technologies play a fundamental role in positioning applications with nanoscale or even lower resolution. These materials make possible the design and development of positioning systems with high resolution and bandwidth. However, nonlinear effects such as hysteresis and creep affect the position accuracy of piezoelectric-based systems if not controlled. Often, position sensors are mounted to these systems to permit a feedback control and the elimination of the hysteresis and creep effects. Nonetheless, the integration of sensors to enable quality and robust servo control poses specific problems for microrobots. This is especially true when the number of degrees of freedom (DOF) increases. Precision position sensors are usually very bulky and expensive. Alternative solutions to the integration of external position sensors can be grouped into two categories: either by open-loop control, also called feedforward control schemes or by Self-Sensing Actuation (SSA) control-based techniques, that is, a feedback control that uses the piezoelectric actuator as its own sensor.In this thesis, the objective is to design and control a piezoelectric-based positioning system with an embedded measurement by SSA method and having several degrees of freedom. To this end, the two classes of SSA, namely SSA based on the piezoelectric direct effect and the SSA based on the change of electrical properties of the piezoelectric actuator (PEAs), are studied in depth to determine the more adequate for force and position control in piezoelectric actuators typified by creep and hysteresis nonlinearities and devoted to precise operations. Additionally, from this study, an improved constitutive model and parameter identification technique are presented which includes the electromechanical coupling effect on the piezoelectric material properties (elastic and dielectric constants).A novel technique for real-time evaluation of the PEA's electrical properties is developed. This evaluation is based on the measurement of the amplitude of the detection current that results from the application of high-frequency low amplitude input voltage that is superimposed to the control input voltage which actuates the PEA. Then an estimator that uses the detection current to estimate the PEA's position is designed. Finally, a microrobotics platform for planar positioning with high resolution and the developed embedded measurement by SSA is presented
APA, Harvard, Vancouver, ISO, and other styles
45

Singh, Mahendra Dhanu [Verfasser], Andrés [Akademischer Betreuer] Kecskeméthy, and Castelli Vincenzo [Akademischer Betreuer] Parenti. "Model-Based Force Control of a Fluidic-Muscle Driven Parallel Platform / Mahendra Dhanu Singh. Gutachter: Vincenzo Parenti Castelli. Betreuer: Andrés Kecskeméthy." Duisburg, 2011. http://d-nb.info/1015268021/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pekari, Gregory Chivers Kurt Miles Erickson Brian G. Belcher Robert C. Kartashov Vitalii. "An analysis comparing Commander Submarine Force U.S. Pacific Fleet (CSP) current inventory management tool versus PACFLT Regional Inventory Stocking Model (PRISM) : a proposed demand-based management tool /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FPekari.pdf.

Full text
Abstract:
Thesis (M.B.A.)--Naval Postgraduate School, June 2003.<br>"MBA professional report"--Cover. Joint authors: Kurt Miles Chivers, Brian G. Erickson, Robert C. Belcher, Vitalii Kartashov. Thesis advisor(s): Raymond Franck, Keebom Kang, Dan Dolk. Includes bibliographical references (p. 119-120). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Hanqing. "Design and control of a 6-phase Interleaved Boost Converter based on SiC semiconductors with EIS functionality for Fuel Cell Electric Vehicle." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCA009/document.

Full text
Abstract:
Cette thèse traite l’étude et le contrôle d’un hacheur élévateur à 6 phases entrelacées basé sur des semi-conducteurs en carbure de silicium (SiC) et des inductances couplées inverses pour véhicules électriques à pile à combustible (FCEV). . L'ondulation du courant dans la pile est combustible est considérablement réduite et la durée de vie de celle-ci peut être prolongée. Les semi-conducteurs en SiC, en raison de leurs faibles pertes, permettent de meilleures performances thermiques et une fréquence de commutation plus élevée. Les volumes des composants passifs (inductances et condensateurs) sont ainsi réduits. Grâce aux inductances à couplage inverse, les pertes du noyau magnétique et du bobinage sont réduites.La stratégie de contrôle par mode glissant est développée en raison de sa grande robustesse face aux variations de paramètres. La fonctionnalité de détection en ligne de spectroscopie d'impédance électrochimique (SIE) est intégrée avec succès à l’algorithme de contrôle par mode glissant.La validation HIL (Hardware In the Loop) en temps réel du convertisseur proposé est obtenue en implémentant la partie puissance dans le FPGA et la partie commande dans le microprocesseur du système de prototypage MicroLabBox de dSPACE. La comparaison entre la simulation hors ligne et la validation HIL a démontré le comportement dynamique du convertisseur proposé et validé la mise en œuvre du contrôle dans un contrôleur en temps réel avant de futurs tests sur un banc d'essai expérimental à échelle réduite<br>The objective of this thesis work is devoted to the design and control of a DC/DC boost converter for Fuel Cell Electric Vehicle (FCEV) application. A 6-phase Interleaved Boost Converter (IBC) based on Silicon Carbide (SiC) semiconductors and inversed coupled inductors of cyclic cascade structure is proposed. The input current ripple is reduced significantly and the lifespan of Polymer Electrolyte Membrane Fuel Cell (PEMFC) can be extended. Low power losses, good thermal performance and high switching frequency have been gained by the selected SiC-based semiconductors. The volumes of passive components (inductors and capacitors) are reduced. Thanks to the inverse coupled inductors, the core losses and copper losses are decreased and the compact magnetic component is achieved.Sliding-Mode Control (SMC) strategy is developed due to its high robust to parameter variations. on-line Electrochemical Impedance Spectroscopy (EIS) detection functionality is successfully integrated with SMC. No additional equipment and sensor is required.The real-time Hardwar In the Loop (HIL) validation of the proposed converter is achieved by implement the power part into the FPGA and the control into the microprocessor in the MicroLabBox prototyping system from dSPACE. The comparison between off-line simulation and HIL validation demonstrated the dynamic behavior of the proposed converter and validated the implementation of the control into a real time controller before future tests on experimental test bench
APA, Harvard, Vancouver, ISO, and other styles
48

Zhao, Yuchen. "Human skill capturing and modelling using wearable devices." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27613.

Full text
Abstract:
Industrial robots are delivering more and more manipulation services in manufacturing. However, when the task is complex, it is difficult to programme a robot to fulfil all the requirements because even a relatively simple task such as a peg-in-hole insertion contains many uncertainties, e.g. clearance, initial grasping position and insertion path. Humans, on the other hand, can deal with these variations using their vision and haptic feedback. Although humans can adapt to uncertainties easily, most of the time, the skilled based performances that relate to their tacit knowledge cannot be easily articulated. Even though the automation solution may not fully imitate human motion since some of them are not necessary, it would be useful if the skill based performance from a human could be firstly interpreted and modelled, which will then allow it to be transferred to the robot. This thesis aims to reduce robot programming efforts significantly by developing a methodology to capture, model and transfer the manual manufacturing skills from a human demonstrator to the robot. Recently, Learning from Demonstration (LfD) is gaining interest as a framework to transfer skills from human teacher to robot using probability encoding approaches to model observations and state transition uncertainties. In close or actual contact manipulation tasks, it is difficult to reliabley record the state-action examples without interfering with the human senses and activities. Therefore, wearable sensors are investigated as a promising device to record the state-action examples without restricting the human experts during the skilled execution of their tasks. Firstly to track human motions accurately and reliably in a defined 3-dimensional workspace, a hybrid system of Vicon and IMUs is proposed to compensate for the known limitations of the individual system. The data fusion method was able to overcome occlusion and frame flipping problems in the two camera Vicon setup and the drifting problem associated with the IMUs. The results indicated that occlusion and frame flipping problems associated with Vicon can be mitigated by using the IMU measurements. Furthermore, the proposed method improves the Mean Square Error (MSE) tracking accuracy range from 0.8˚ to 6.4˚ compared with the IMU only method. Secondly, to record haptic feedback from a teacher without physically obstructing their interactions with the workpiece, wearable surface electromyography (sEMG) armbands were used as an indirect method to indicate contact feedback during manual manipulations. A muscle-force model using a Time Delayed Neural Network (TDNN) was built to map the sEMG signals to the known contact force. The results indicated that the model was capable of estimating the force from the sEMG armbands in the applications of interest, namely in peg-in-hole and beater winding tasks, with MSE of 2.75N and 0.18N respectively. Finally, given the force estimation and the motion trajectories, a Hidden Markov Model (HMM) based approach was utilised as a state recognition method to encode and generalise the spatial and temporal information of the skilled executions. This method would allow a more representative control policy to be derived. A modified Gaussian Mixture Regression (GMR) method was then applied to enable motions reproduction by using the learned state-action policy. To simplify the validation procedure, instead of using the robot, additional demonstrations from the teacher were used to verify the reproduction performance of the policy, by assuming human teacher and robot learner are physical identical systems. The results confirmed the generalisation capability of the HMM model across a number of demonstrations from different subjects; and the reproduced motions from GMR were acceptable in these additional tests. The proposed methodology provides a framework for producing a state-action model from skilled demonstrations that can be translated into robot kinematics and joint states for the robot to execute. The implication to industry is reduced efforts and time in programming the robots for applications where human skilled performances are required to cope robustly with various uncertainties during tasks execution.
APA, Harvard, Vancouver, ISO, and other styles
49

Winkler, Alexander. "Sensorgeführte Bewegungen stationärer Roboter." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-197679.

Full text
Abstract:
Den Kern der vorliegenden Arbeit bilden sog. sensorgeführte Roboterbewegungen, d. h. die Nutzung von Informationen externer Sensoren zur Regelung des Roboters. Da gängige Industrierobotersysteme üblicherweise positionsgeregelt sind und seitens der Robotersteuerung lediglich der Zugriff zu den Sollwerten der Lageregelkreise erlaubt wird, kann auch der Regelkreis der sensorgeführten Roboterbewegung nur über den Lageregelkreis geschlossen werden. Aus diesem Grunde werden hier nur positionsbasierte Regelungsansätze verfolgt. Die Kraft-/ Momentregelung gilt als eine der wichtigsten Varianten sensorgeführter Roboterbewegungen. Dementsprechend widmet sich auch ein großer Teil dieser Arbeit dem Thema, mit dem Ziel durch innovative und übersichtliche Regelalgorithmen die Akzeptanz der Kraft-/ Momentregelung in industriellen Produktionsprozessen zu erhöhen. Beginnend mit der eindimensionalen Kraftregelung führt der Weg dabei über Konzepte zur Konturenverfolgung und kraft-/ momentgeregelten Montageaufgaben hin zur Kooperation von Robotern. In einem weiteren Teil wird ein Konzept zur Kollisionsvermeidung zwischen Robotern und Hindernissen präsentiert. Es basiert auf dem Ansatz der virtuellen Potential- bzw. Kraftfelder. Dabei ruft das künstliche Feld eine Bewegung des Roboters hervor, die vom Hindernis weg führt. Um das Feld zu erzeugen, wird die Methode der künstlichen Punktladungen entwickelt. Diese werden auf der Oberfläche eines Hindernisses platziert und generieren dann das virtuelle Kraftfeld. Die Platzierung kann z. B. mithilfe der CAD-Daten des Hindernisses erfolgen. Bei bewegten Objekten müssen alle Ladungspositionen ständig aktualisiert werden. Für Lehr- und Präsentationszwecke ist das sog. inverse Pendel eine oft genutzte Regelstrecke. Sein Aufrichten und Stabilisieren ist auch mit Hilfe eines Industrieroboters möglich. Dazu beschäftigt sich ein Kapitel dieser Arbeit mit Fragen zur Modellbildung der Kombination inverses Pendel und Industrieroboter und mit Regelungskonzepten für das Aufschwingen und Balancieren. Letztendlichen wird in diesem Zusammenhang noch ein Visual-Servoing System präsentiert, dass den Neigungswinkel des Pendels mit einer Kamera bestimmt. Alle hier vorgestellten Konzepte und Algorithmen werden Anhand von praktischen Experimenten verifiziert<br>This work deals with so-called sensor guided robot motions, which means using the data of external sensors to control the robot. The control loop of the sensor guided robot motion can be only closed around the position control loop, because industrial robot systems usually work position controlled and only access to the desired positions is enabled. For this reason here only position based control approaches are regarded. Force/torque control is a very important type of sensor guided robot motions. According to this, a good portion of this work deals with the subject of force/torque control. Thus, the acceptance of force/torque control in industrial production processes should be increased, by using innovative and clear control algorithms. For this purpose force control in one degree of freedom, contour-following, force/torque controlled assembling tasks and the cooperation between robots are discussed here in different chapters. Thereafter, a concept to collision avoidance between robots and obstacles is presented. It uses the approach of virtual potential/force fields. In this case the artificial field induces a robot motion away from the obstacle. The method of artificial charges is developed to generate this field. For this purpose virtual charges are placed on the surface of the obstacles. Placing of the charges can be performed using e.g. CAD data of the obstacles. Having moving obstacles charge positions must be updated continuously. The inverted pendulum is commonly used teaching students in control theory. The swinging up and the stabilization of the pendulum also can be performed by an industrial robot. One chapter of this work deals with modelling of the robot mounted inverted pendulum and control algorithms for its swinging up and its stabilization. Finally, in combination with the inverted pendulum a visual-servoing system is presented, which measures the pendulum inclination angle by camera. All concepts introduced in this work are verified by practical experiments
APA, Harvard, Vancouver, ISO, and other styles
50

Liao, Zhi-Xian, and 廖智賢. "Reaction Vector Based Force/Torque Impedance Control for Cooperative Dual Arm Robot." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/nsr8qh.

Full text
Abstract:
碩士<br>國立臺灣大學<br>電機工程學研究所<br>105<br>With the advantage of technology and increasing of labor cost, there is an increasing tend in industrial automation. At the beginning, the industry use single-arm robot to replace employees of production line. However, there are many motion which human can achieve but single-arm robot can’t. They need another holder or aids to help them finishing the mission. In order to solve this problem, the research of multi robots synchronized working and the research of dual-arm robot emerge along with it. Because of the low cost of dual-arm robot, high space utilization, the anthropomorphic dexterity, and anthropomorphic high coordination degree, the dual-arm robot become the main trend of development. In addition to having dexterous arms, dual-arm cooperation makes human arms more omnipotent. The safety issue of collision avoidance can’t be ignored when dual arms are cooperating. Therefore, this thesis proposes and implements a cooperation system for a modularized 7 degrees of freedom dual-arm manipulator, which have a reaction vector system to detect the risk of collision and avoid the collision. And the motion of the dual-arm manipulator is based on impedance torque control. Through the vision sensor, the dual-arm manipulator can detect and decide the mission. Is the mission that the dual arms need to cooperate gripping the component? Or is the mission that each arm needs to grip one component and then does the corresponding motion? And this decision system defines the potential of dual arms and the components. The potential will make the reaction vector system produce the attractive vector or the repulsive vector between the two. And then the vectors make the reaction vector system produce a movement trajectory. In the process of motion, the reaction vector system which this thesis proposed can detect the risk of the dual arm collision and produce the corresponding vector to dodge the other arm. Then the vector-based online trajectory generator is provided in the reaction vector system to smooth jerky commands. At last, applying an external guiding torque to the impedance control becomes the impedance torque control, and control the each motor of axis to reach the angle which we want. The dual-arm manipulator also finish the mission.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography