Academic literature on the topic 'Forcing (Model theory) Topology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Forcing (Model theory) Topology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Forcing (Model theory) Topology"
van den Berg, Benno, and Ieke Moerdijk. "The axiom of multiple choice and models for constructive set theory." Journal of Mathematical Logic 14, no. 01 (June 2014): 1450005. http://dx.doi.org/10.1142/s0219061314500056.
Full textFarah, Ilijas. "Completely Additive Liftings." Bulletin of Symbolic Logic 4, no. 1 (March 1998): 37–54. http://dx.doi.org/10.2307/421005.
Full textAvigad, Jeremy. "Forcing in Proof Theory." Bulletin of Symbolic Logic 10, no. 3 (September 2004): 305–33. http://dx.doi.org/10.2178/bsl/1102022660.
Full textKunen, Kenneth. "Forcing and Differentiable Functions." Order 29, no. 2 (April 1, 2011): 293–310. http://dx.doi.org/10.1007/s11083-011-9210-8.
Full textANTOS, CAROLIN, and SY-DAVID FRIEDMAN. "HYPERCLASS FORCING IN MORSE-KELLEY CLASS THEORY." Journal of Symbolic Logic 82, no. 2 (June 2017): 549–75. http://dx.doi.org/10.1017/jsl.2016.74.
Full textDasgupta, Soham. "Sd - Topology over the theory of a Model." IARJSET 7, no. 12 (December 30, 2020): 46–48. http://dx.doi.org/10.17148/iarjset.2020.71209.
Full textHamel, Clovis, and Franklin D. Tall. "Model theory for Cp-theorists." Topology and its Applications 281 (August 2020): 107197. http://dx.doi.org/10.1016/j.topol.2020.107197.
Full textMalliaris, M., and S. Shelah. "Cofinality spectrum theorems in model theory, set theory, and general topology." Journal of the American Mathematical Society 29, no. 1 (April 9, 2015): 237–97. http://dx.doi.org/10.1090/jams830.
Full textBaldwin, J. T., M. C. Laskowski, and S. Shelah. "Forcing isomorphism." Journal of Symbolic Logic 58, no. 4 (December 1993): 1291–301. http://dx.doi.org/10.2307/2275144.
Full textMalliaris, M., and S. Shelah. "General topology meets model theory, on p and t." Proceedings of the National Academy of Sciences 110, no. 33 (July 8, 2013): 13300–13305. http://dx.doi.org/10.1073/pnas.1306114110.
Full textDissertations / Theses on the topic "Forcing (Model theory) Topology"
Williamson, Richard David. "Categorical model structures." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:466f4700-7cbf-401c-b0b7-9399b4c840df.
Full textGarcía, Ávila Luz María. "Forcing Arguments in Infinite RamseyTheory." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/119818.
Full textAquesta tesi és una contribució a la teoria combinatria de conjunts, específcament a la teoria de Ramsey, que estudia les particions de conjunts infinits. El principi combinatori bàsic diu que per a tota partició del conjunt dels nombres naturals en un nombre finit de classes hi ha un conjunt infinit de nombres naturals que està inclòs en una de les classes. El teorema de Ramsey [6], que hom pot veure com una generalització d'aquest principi bàsic, tracta de les particions del conjunt [N]k de tots els subconjunts de k elements de nombres naturals. Afirma que, per a cada k >/=1 i cada partició de [N]k en un nombre finit de classes, existeix un subconjunt infinit de nombres naturals, M, tal que tots els subconjunts de k elements de M pertanyen a una mateixa classe. Els conjunts amb aquesta propietat són homogenis per a la partició. En [3], Neil Hindman va demostrar un resultat de tipus Ramsey que Graham i Rotschild havien conjecturat en [2]. El teorema de Hindman afirma que si el conjunt de nombres naturals es divideix en dues classes, almenys una d'aquestes classes conté un conjunt infinit tal que totes les sumes finites d'elements distints del conjunt pertanyen a la mateixa classe. La demostració original del Teorema de Hindman va ser simplificada per James Baumgartner en [1]. En aquesta tesi donem noves demostracions d'aquests dos teoremes, basades en la tècnica del forcing. Després, analitzem els ordres parcials corresponents i n'estudiem les propietats i la relació amb altres ordres coneguts semblants. L'ordre parcial emprat en la demostració del teorema de Ramsey és equivalent al forcing de Mathias, definit en [5]. L'ordre parcial que apareix en la prova del teorema de Hindman, que anomenem PFIN, serà l'objecte d'estudi principal de la tesi. En el primer capítol donem algunes definicions bàsiques i enunciem alguns teoremes coneguts que necessitarem més endavant. El segon capítol conté la demostració del teorema de Ramsey. Usant la tècnica del forcing, produïm un conjunt homogeni per a una partició donada. L'ordre parcial que utilitzem és equivalent al de Mathias. En el tercer capítol, modifiquem la demostració de Baumgartner del teorema de Hindman per definir un ordre parcial, que anomenem PC , a partir del qual, mitjançant arguments de forcing, obtenim el conjunt homogeni buscat. Aquí, C es un conjunt infinit de conjunts finits disjunts de nombres naturals, i PC afegeix una successió de conjunts finits de nombres naturals amb la propietat de que totes les unions finites de elements d'aquesta successió pertanyen al conjunt C . A partir d'aquesta successió és fàcil obtenir un conjunt homogeni per a la partició del teorema original de Hindman. L'ordre parcial PC és similar a l'ordre definit per Pierre Matet en [4] i també al forcing de Mathias. Per això, és natural preguntar-nos si aquests ordres són equivalents o no. En el quart capítol treballem amb un ordre parcial que és equivalent a PC i que anomenem PFIN. Mostrem que PFIN té les propietats següents: (1) A partir d'un filtre genèric per a PFIN obtenim una successió infinita de conjunts finits de nombres naturals. Com en el cas del real de Mathias, aquesta successi_o ens permet reconstruir tot el filtre genèric. (2) PFIN afegeix un real de Mathias, que és un "dominating real". Ara bé, si afegim un "dominating real" afegim també un "splitting real". Aquest fet ens permet concloure que PFIN no és equivalent al forcing de Matet, ja que el forcing de Matet no afegeix "splitting reals" (3) PFIN es pot veure com una iteració de dos ordres parcials, el primer dels quals és "sigma-closed" i el segon és "sigma-centered". (4) PFIN té la "pure decision property". (5) PFIN no afegeix reals de Cohen. En el cinquè capítol demostrem que PFIN afegeix un real de Matet i, finalment, que el forcing de Mathias no afegeix reals de Matet. Això és com demostrem que el forcing de Mathias i PFIN no són ordres equivalents. Al final del capítol donem una aplicació de PFIN. Demostrem que un cert ordre definit per Saharon Shelah en [7], que anomenem M2, és una projecció de PFIN. Això implica que si G és un filtre PFIN-genèric sobre V, l'extensió V [G] conté també un filtre genèric per a M2. L'ordre M2 és una mena de producte de dues cópies del forcing de Mathias. REFERÈNCIES [1] J.E. Baumgartner. A short proof of Hindman's theorem, Journal of Combinatorial Theory, 17: 384-386, (1974). [2] R.L. Graham and B.L. Rothschild. Ramsey's theorem for m-parameter sets, Transaction American Mathematical Society, 159: 257-292, (1971). [3] N. Hindman. Finite sums from sequences within cells of partitions of N, Journal of Combinatorial Theory (A), 17: 1-11, (1974). [4] P. Matet. Some _lters of partitions, The Journal of Symbolic Logic, 53: 540-553, (1988). [5] A.R.D. Mathias. Happy families, Annals of Mathematical Logic, 12: 59-111, (1977). [6] F.P. Ramsey. On a problem of formal logic, London Mathematical Society, 30:264_D286, 1930. [7] S. Shelah and O. Spinas. The distributivity numbers of finite products of P(!)=fin, Fundamenta Mathematicae, 158:81_D93, 1998.
Poveda, Ruzafa Alejandro. "Contributions to the theory of Large Cardinals through the method of Forcing." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670765.
Full textHajek, Pavel [Verfasser], and Kai [Akademischer Betreuer] Cieliebak. "IBL-Infinity Model of String Topology from Perturbative Chern-Simons Theory / Pavel Hajek ; Betreuer: Kai Cieliebak." Augsburg : Universität Augsburg, 2020. http://d-nb.info/1210424916/34.
Full textZois, Ioannis. "The duality between two-index potentials and the non-linear sigma model in field theory." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:c350f73e-5e44-4942-8674-4321f5075b1e.
Full textVicinsky, Deborah. "The Homotopy Calculus of Categories and Graphs." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19283.
Full textBordoni, Rafael de Lima. "Minimal walks and applications." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-215130/.
Full textPasseios mínimos são um método de demonstrações em teoria dos conjuntos e topologia geral. Apesar do trabalho principal dessa dissertação ser a existência do L espaço, a intenção é explicar os fundamentos dos passeios mínimos um tanto detalhadamente.
Kotecha, Vinay. "Solitons on lattices and curved space-time." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3845/.
Full textKarlsson, Johan. "Inverse Problems in Analytic Interpolation for Robust Control and Spectral Estimation." Doctoral thesis, Stockholm : Matematik, Mathematics, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9248.
Full textPotier, Joris. "A few things about hyperimaginaries and stable forking." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/394029.
Full textEn este texto se trata, por una parte, de la relación entre grupos compactos e hiper-imaginarios acotados, y por otra parte se prueba que una teoría T tiene la propiedad de bifurcación estable si i solo si Teq la tiene.
Books on the topic "Forcing (Model theory) Topology"
Zapletal, Jindřich. Forcing idealized. Cambridge: Cambridge University Press, 2008.
Find full textThe axiom of determinacy, forcing axioms, and the nonstationary ideal. Berlin: W. de Gruyter, 1999.
Find full textTodorcevic, Stevo. Some applications of the method of forcing. Moscow: Yenisei, 1995.
Find full textWoodin, W. H. The axiom of determinacy, forcing axioms, and the nonstationary ideal. 2nd ed. Berlin: De Gruyter, 2010.
Find full textRosłanowski, Andrzej. Norms on possibilities I: Forcing with trees and creatures. Providence, R.I: American Mathematical Society, 1999.
Find full textChong, C. T., W. H. Woodin, Qi Feng, T. A. Slaman, and Yue Yang. Forcing, iterated ultrapowers, and Turing degrees. New Jersey: World Scientific, 2015.
Find full textCarson, Andrew B. Model completions, ring representations, and the topology of the Pierce sheaf. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Find full textMiller, Arnold W. Descriptive set theory and forcing: How to prove theorems about Borel sets the hard way. 2nd ed. Natick, Mass: AK Peters, 2002.
Find full textBook chapters on the topic "Forcing (Model theory) Topology"
Miller, Arnold W. "Cohen real model." In Descriptive Set Theory and Forcing, 46–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-21773-3_14.
Full textMiller, Arnold W. "The random real model." In Descriptive Set Theory and Forcing, 57–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-21773-3_15.
Full textBandyopadhyay, Pratul. "Skyrme Model." In Geometry, Topology and Quantum Field Theory, 119–42. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1697-0_4.
Full textKaku, Michio. "WZW Model, Cosets, and Rational Conformal Field Theory." In Strings, Conformal Fields, and Topology, 70–97. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-0397-8_3.
Full textKluge, Roland, Gergely Varró, and Andy Schürr. "A Methodology for Designing Dynamic Topology Control Algorithms via Graph Transformation." In Theory and Practice of Model Transformations, 199–213. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21155-8_15.
Full textFrymark, Dale, and Constanze Liaw. "Spectral Analysis, Model Theory and Applications of Finite-Rank Perturbations." In Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology, 171–202. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43380-2_9.
Full textDudal, David, Karel Acoleyen, and Henri Verschelde. "Dynamical Mass Generation in Quantum Field Theory: Some Methods With Application to the Gross-Neveu Model and Yang-Mills Theory." In Confinement, Topology, and Other Non-Perturbative Aspects of QCD, 97–104. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9_11.
Full textNogueras, Rafael, Carlos Cotta, Carlos M. Fernandes, Juan Luis Jiménez Laredo, Juan Julián Merelo, and Agostinho C. Rosa. "An Analysis of a Selecto-Lamarckian Model of Multimemetic Algorithms with Dynamic Self-organized Topology." In Theory and Practice of Natural Computing, 205–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45008-2_17.
Full textBrattka, V., and I. Kalantari. "Chapter 12 A bibliography of recursive analysis and recursive topology." In Handbook of Recursive Mathematics - Volume 1: Recursive Model Theory, 583–620. Elsevier, 1998. http://dx.doi.org/10.1016/s0049-237x(98)80013-x.
Full textXIA, YOULONG, PAUL L. STOFFA, CHARLES JACKSON, and MRINAL K. SEN. "EFFECT OF FORCING DATA ERRORS ON CALIBRATION AND UNCERTAINTY ESTIMATES OF THE CHASM MODEL: A MULTI-DATASET STUDY." In Observation, Theory and Modeling of Atmospheric Variability, 340–55. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812791139_0017.
Full textConference papers on the topic "Forcing (Model theory) Topology"
"INTELLIGENT TOPOLOGY PRESERVING GEOMETRIC DEFORMABLE MODEL." In International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0002057403220327.
Full textCzaban, Christopher, and Marc Wagner. "Lattice study of the Schwinger model at fixed topology." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0465.
Full textJin, Cao, He Shaojun, Wang Guijun, and He Wei. "A Topology Model of Complex Network Based on Local-world Theory." In 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC). IEEE, 2011. http://dx.doi.org/10.1109/imccc.2011.207.
Full textSobolev, Sergey, Konstantin Stefanov, and Vadim Voevodin. "Automatic discovery of the communication network topology for building a supercomputer model." In NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA–2016): Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”. Author(s), 2016. http://dx.doi.org/10.1063/1.4965378.
Full textDromard, Arthur, and Marc Wagner. "Studying and removing effects of fixed topology in a quantum mechanical model." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0339.
Full textZubkov, Mikhail. "Monopoles, topology of the Standard Model and unification of interactions at the TeV scale." In The XXV International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.042.0285.
Full textDuque-Escobar, Santiago, Daniel Ocampo-Henao, and José David Ruiz-Álvarez. "Searching for Dark Matter through Vector Boson Fusion Topology at the LHC." In The International Conference on Beyond Standard Model: From Theory To Experiment. Andromeda Publishing and Academic Services, 2021. http://dx.doi.org/10.31526/acp.bsm-2021.4.
Full textHou, Yongfu, Yifei Wei, Mei Song, and F. Richard Yu. "Topology Evolution Model for Cognitive Ad Hoc Networks Based on Complex Network Theory." In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). IEEE, 2016. http://dx.doi.org/10.1109/vtcspring.2016.7504507.
Full textLU, Kui, Xin Jin, Jian-dong Zhao, and Jian-peng Sun. "Research on Some Topology Model of Wireless Sensor Networks Based on Complex Network Theory." In 2015 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmmcce-15.2015.221.
Full textLv, Dianji, Guojuan Zhou, and Xinjie Wu. "Research on the Graph Theory and Topology Optimization Model with the Applications on Mobile Communication." In 2016 2nd International Conference on Social Science and Technology Education (ICSSTE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icsste-16.2016.123.
Full text