To see the other types of publications on this topic, follow the link: Forcing (Model theory) Topology.

Dissertations / Theses on the topic 'Forcing (Model theory) Topology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'Forcing (Model theory) Topology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Williamson, Richard David. "Categorical model structures." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:466f4700-7cbf-401c-b0b7-9399b4c840df.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

García, Ávila Luz María. "Forcing Arguments in Infinite RamseyTheory." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/119818.

Full text
Abstract:
This is a contribution to combinatorial set theory, specifically to infinite Ramsey Theory, which deals with partitions of infinite sets. The basic pigeon hole principle states that for every partition of the set of all natural numbers in finitely many classes there is an infinite set of natural numbers that is included in some one class. Ramsey’s Theorem, which can be seen as a generalization of this simple result, is about partitions of the set [N]k of all k-element sets of natural numbers. It states that for every k ≥ 1 and every partition of [N]k into finitely many classes, there is an infinite subset M of N such that all k-element subsets of M belong to some same class. Such a set is said to be homogeneous for the partition. In Ramsey’s own formulation (Ramsey, [8], p.264), the theorem reads as follows. Theorem (Ramsey). Let Γ be an infinite class, and μ and r positive numbers; and let all those sub-classes of Γ which have exactly r numbers, or, as we may say, let all r−combinations of the members of Γ be divided in any manner into μ mutually exclusive classes Ci (i = 1, 2, . . . , μ), so that every r−combination is a member of one and only one Ci; then assuming the axiom of selections, Γ must contain an infinite sub-class △ such that all the r−combinations of the members of △ belong to the same Ci. In [5], Neil Hindman proved a Ramsey-like result that was conjectured by Graham and Rotschild in [3]. Hindman’s Theorem asserts that if the set of all natural numbers is divided into two classes, one of the classes contains an infinite set such that all finite sums of distinct members of the set remain in the same class. Hindman’s original proof was greatly simplified, though the same basic ideas were used, by James Baumgartner in [1]. We will give new proofs of these two theorems which rely on forcing arguments. After this, we will be concerned with the particular partial orders used in each case, with the aim of studying its basic properties and its relations to other similar forcing notions. The partial order used to get Ramsey’s Theorem will be seen to be equivalent to Mathias forcing. The analysis of the partial order arising in the proof of Hindmans Theorem, which we denote by PFIN, will be object of the last chapter of the thesis. A summary of our work follows. In the first chapter we give some basic definitions and state several known theorems that we will need. We explain the set theoretic notation used and we describe some forcing notions that will be useful in the sequel. Our notation is generally standard, and when it is not it will be sufficiently explained. This work is meant to be self-contained. Thus, although most of the theorems recorded in this first, preliminary chapter, will be stated without proof, it will be duly indicated where a proof can be found. Chapter 2 is devoted to a proof of Ramsey’s Theorem in which forcing is used to produce a homogeneous set for the relevant partition. The partial order involved is isomorphic to Mathias forcing. In Chapter 3 we modify Baumgartner’s proof of Hindman’s Theorem to define a partial order, denoted by PC , from which we get by a forcing argument a suitable homogeneous set. Here C is an infinite set of finite subsets of N, and PC adds an infinite block sequence of finite subsets of natural numbers with the property that all finite unions of its elements belong to C. Our proof follows closely Baumgartner’s. The partial order PC is similar both to the one due to Matet in [6] and to Mathias forcing. This prompts the question whether it is equivalent to one of them or to none, which can only be solved by studying PC , which we do in chapter 4. In chapter 4 we first show that the forcing notion PC is equivalent to a more manageable partial order, which we denote by PFIN. From a PFIN- generic filter an infinite block sequence can be defined, from which, in turn, the generic filter can be reconstructed, roughly as a Mathias generic filter can be reconstructed from a Mathias real. In section 4.1 we prove that PFIN is not equivalent to Matet forcing. This we do by showing that PFIN adds a dominating real, thus also a splitting real (see [4]). But Blass proved that Matet forcing preserves p-point ultrafilters in [2], from which follows that Matet forcing does not add splitting reals. Still in section 4.1 we prove that PFIN adds a Mathias real by using Mathias characterization of a Mathias real in [7] according to which x ⊆ ω is a Mathias real over V iff x diagonalizes every maximal almost disjoint family in V . In fact, we prove that if D = (Di)i∈ω is the generic block sequence of finite sets of natural numbers added by forcing with PFIN, then both {minDi : i ∈ ω} and {maxDi : i ∈ ω} are Mathias reals. In section 4.2 we prove that PFIN is equivalent to a two-step iteration of a σ-closed and a σ-centered forcing notions. In section 4.3 we prove that PFIN satisfies Axiom A and in section 4.4 that, as Mathias forcing, it has the pure decision property. In section 4.5 we prove that PFIN does not add Cohen reals. So far, all the properties we have found of PFIN are also shared by Mathias forcing. The question remains, then, whether PFIN is equivalent to Mathias forcing. This we solve by first showing in section 5.1 that PFIN adds a Matet real and then, in section 5.2, that Mathias forcing does not add a Matet real, thus concluding that PFIN and Mathias forcing are not equivalent forcing notions. In the last, 5.3, section we explore another forcing notion, denoted by M2, which was introduced by Shelah in [9]. It is a kind of “product” of two copies of Mathias forcing, which we relate to denoted by M2. Bibliography [1] J.E. Baumgartner. A short proof of Hindmanʼs theorem. Journal of Combinatorial Theory, 17:384–386, 1974. [2] A. Blass. Applications of superperfect forcing and its relatives. In Set theory and its applications. Lecture notes in Mathematics. Springer, Berlin., 1989. [3] R.L. Graham and B. L. Rothschild. Ramseyʼs theorem for n-parameter sets. Transaction American Mathematical Society, 159:257–292, 1971. [4] L. Halbeisen. A playful approach to Silver and Mathias forcing. Studies in Logic (London), 11:123142, 2007. [5] N. Hindman. Finite sums from sequences within cells of partition of N. Journal of Combinatorial Theory (A), 17:1–11, 1974. [6] P. Matet. Some filters of partitions. The Journal of Symbolic Logic, 53:540– 553, 1988. [7] A.R.D. Mathias. Happy families. Annals of Mathematical logic, 12:59– 111, 1977. [8] F.P. Ramsey. On a problem of formal logic. London Mathematical Society, 30:264–286, 1930. [9] S. Shelah and O. Spinas. The distributivity numbers of finite products of P(ω)/fin. Fundamenta Mathematicae, 158:81–93, 1998.
Aquesta tesi és una contribució a la teoria combinatria de conjunts, específcament a la teoria de Ramsey, que estudia les particions de conjunts infinits. El principi combinatori bàsic diu que per a tota partició del conjunt dels nombres naturals en un nombre finit de classes hi ha un conjunt infinit de nombres naturals que està inclòs en una de les classes. El teorema de Ramsey [6], que hom pot veure com una generalització d'aquest principi bàsic, tracta de les particions del conjunt [N]k de tots els subconjunts de k elements de nombres naturals. Afirma que, per a cada k >/=1 i cada partició de [N]k en un nombre finit de classes, existeix un subconjunt infinit de nombres naturals, M, tal que tots els subconjunts de k elements de M pertanyen a una mateixa classe. Els conjunts amb aquesta propietat són homogenis per a la partició. En [3], Neil Hindman va demostrar un resultat de tipus Ramsey que Graham i Rotschild havien conjecturat en [2]. El teorema de Hindman afirma que si el conjunt de nombres naturals es divideix en dues classes, almenys una d'aquestes classes conté un conjunt infinit tal que totes les sumes finites d'elements distints del conjunt pertanyen a la mateixa classe. La demostració original del Teorema de Hindman va ser simplificada per James Baumgartner en [1]. En aquesta tesi donem noves demostracions d'aquests dos teoremes, basades en la tècnica del forcing. Després, analitzem els ordres parcials corresponents i n'estudiem les propietats i la relació amb altres ordres coneguts semblants. L'ordre parcial emprat en la demostració del teorema de Ramsey és equivalent al forcing de Mathias, definit en [5]. L'ordre parcial que apareix en la prova del teorema de Hindman, que anomenem PFIN, serà l'objecte d'estudi principal de la tesi. En el primer capítol donem algunes definicions bàsiques i enunciem alguns teoremes coneguts que necessitarem més endavant. El segon capítol conté la demostració del teorema de Ramsey. Usant la tècnica del forcing, produïm un conjunt homogeni per a una partició donada. L'ordre parcial que utilitzem és equivalent al de Mathias. En el tercer capítol, modifiquem la demostració de Baumgartner del teorema de Hindman per definir un ordre parcial, que anomenem PC , a partir del qual, mitjançant arguments de forcing, obtenim el conjunt homogeni buscat. Aquí, C es un conjunt infinit de conjunts finits disjunts de nombres naturals, i PC afegeix una successió de conjunts finits de nombres naturals amb la propietat de que totes les unions finites de elements d'aquesta successió pertanyen al conjunt C . A partir d'aquesta successió és fàcil obtenir un conjunt homogeni per a la partició del teorema original de Hindman. L'ordre parcial PC és similar a l'ordre definit per Pierre Matet en [4] i també al forcing de Mathias. Per això, és natural preguntar-nos si aquests ordres són equivalents o no. En el quart capítol treballem amb un ordre parcial que és equivalent a PC i que anomenem PFIN. Mostrem que PFIN té les propietats següents: (1) A partir d'un filtre genèric per a PFIN obtenim una successió infinita de conjunts finits de nombres naturals. Com en el cas del real de Mathias, aquesta successi_o ens permet reconstruir tot el filtre genèric. (2) PFIN afegeix un real de Mathias, que és un "dominating real". Ara bé, si afegim un "dominating real" afegim també un "splitting real". Aquest fet ens permet concloure que PFIN no és equivalent al forcing de Matet, ja que el forcing de Matet no afegeix "splitting reals" (3) PFIN es pot veure com una iteració de dos ordres parcials, el primer dels quals és "sigma-closed" i el segon és "sigma-centered". (4) PFIN té la "pure decision property". (5) PFIN no afegeix reals de Cohen. En el cinquè capítol demostrem que PFIN afegeix un real de Matet i, finalment, que el forcing de Mathias no afegeix reals de Matet. Això és com demostrem que el forcing de Mathias i PFIN no són ordres equivalents. Al final del capítol donem una aplicació de PFIN. Demostrem que un cert ordre definit per Saharon Shelah en [7], que anomenem M2, és una projecció de PFIN. Això implica que si G és un filtre PFIN-genèric sobre V, l'extensió V [G] conté també un filtre genèric per a M2. L'ordre M2 és una mena de producte de dues cópies del forcing de Mathias. REFERÈNCIES [1] J.E. Baumgartner. A short proof of Hindman's theorem, Journal of Combinatorial Theory, 17: 384-386, (1974). [2] R.L. Graham and B.L. Rothschild. Ramsey's theorem for m-parameter sets, Transaction American Mathematical Society, 159: 257-292, (1971). [3] N. Hindman. Finite sums from sequences within cells of partitions of N, Journal of Combinatorial Theory (A), 17: 1-11, (1974). [4] P. Matet. Some _lters of partitions, The Journal of Symbolic Logic, 53: 540-553, (1988). [5] A.R.D. Mathias. Happy families, Annals of Mathematical Logic, 12: 59-111, (1977). [6] F.P. Ramsey. On a problem of formal logic, London Mathematical Society, 30:264_D286, 1930. [7] S. Shelah and O. Spinas. The distributivity numbers of finite products of P(!)=fin, Fundamenta Mathematicae, 158:81_D93, 1998.
APA, Harvard, Vancouver, ISO, and other styles
3

Poveda, Ruzafa Alejandro. "Contributions to the theory of Large Cardinals through the method of Forcing." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670765.

Full text
Abstract:
The present dissertation is a contribution to the field of Mathematical Logic and, more particularly, to the subfield of Set Theory. Within Set theory, we are mainly concerned with the interactions between the largecardinal axioms and the method of Forcing. This is the line of research with a deeper impact in the subsequent configuration of modern Mathematics. This area has found many central applications in Topology [ST71][Tod89], Algebra [She74][MS94][DG85][Dug85], Analysis [Sol70] or Category Theory [AR94][Bag+15], among others. The dissertation is divided in two thematic blocks: In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopenka’s Principle (Part I). In Block II we make a contribution to Singular Cardinal Combinatorics (Part II and Part III). Specifically, in Part I we investigate the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopenka’s Principle. As a result, we settle all the questions that were left open in [Bag12, §5]. Afterwards, we present a general theory of preservation of C(n)– extendible cardinals under class forcing iterations from which we derive many applications. In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) and other combinatorial principles, such as the tree property or the reflection of stationary sets. In Part II we generalize the main theorems of [FHS18] and [Sin16] and manage to weaken the largecardinal hypotheses necessary for Magidor-Shelah’s theorem [MS96]. Finally, in Part III we introduce the concept of _-Prikry forcing as a generalization of the classical notion of Prikry-type forcing. Subsequently we devise an abstract iteration scheme for this family of posets and, as an application, we prove the consistency of ZFC + ¬SCH_ + Refl(La present tesi és una contribució a l’estudi de la Lògica Matemàtica i més particularment a la Teoria de Conjunts. Dins de la Teoria de Conjunts, la nostra àrea de recerca s’emmarca dins l’estudi de les interaccions entre els Axiomes de Grans Cardinals i el mètode de Forcing. Aquestes dues eines han tigut un impacte molt profund en la configuració de la matemàtica contemporànea com a conseqüència de la resolució de qüestions centrals en Topologia [ST71][Tod89], Àlgebra [She74][MS94][DG85][Dug85], Anàlisi Matemàtica [Sol70] o Teoria de Categories [AR94][Bag+15], entre d’altres. La tesi s’articula entorn a dos blocs temàtics. Al Bloc I analitzem la jerarquia de Grans Cardinals compresa entre el primer cardinal supercompacte i el Principi de Vopenka (Part I), mentre que al Bloc II estudiem alguns problemes de la Combinatòria Cardinal Singular (Part II i Part III). Més precisament, a la Part I investiguem el fenòmen de Crisi d’Identitat en la regió compresa entre el primer cardinal supercompacte i el Principi de Vopenka. Com a conseqüència d’aquesta anàlisi resolem totes les preguntes obertes de [Bag12, §5]. Posteriorment presentem una teoria general de preservació de cardinals C(n)–extensibles sota iteracions de longitud ORD, de la qual en derivem nombroses aplicacions. A la Part II i Part III analitzem la relació entre la Hipòtesi dels Cardinals Singulars (SCH) i altres principis combinatoris, tals com la Propietat de l’Arbre o la reflexió de conjunts estacionaris. A la Part II obtenim sengles generalitzacions dels teoremes principals de [FHS18] i [Sin16] i afeblim les hipòtesis necessàries perquè el teorema de Magidor-Shelah [MS96] siga cert. Finalment, a la Part III, introduïm el concepte de forcing _-Prikry com a generalització de la noció clàssica de forcing del tipus Prikry. Posteriorment dissenyem un esquema d’iteracions abstracte per aquesta família de forcings i, com a aplicació, derivem la consistència de ZFC + ¬SCH_ + Refl(
APA, Harvard, Vancouver, ISO, and other styles
4

Hajek, Pavel [Verfasser], and Kai [Akademischer Betreuer] Cieliebak. "IBL-Infinity Model of String Topology from Perturbative Chern-Simons Theory / Pavel Hajek ; Betreuer: Kai Cieliebak." Augsburg : Universität Augsburg, 2020. http://d-nb.info/1210424916/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zois, Ioannis. "The duality between two-index potentials and the non-linear sigma model in field theory." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:c350f73e-5e44-4942-8674-4321f5075b1e.

Full text
Abstract:
We interpret the generalised gauge symmetry introduced in string theory and M-Theory as a special case of Grothendieck's stability equivalence relation in the definition of the 0th K-group and we calculate the Euler number of the elliptic de Rham complex twisted by a flat connection. Then using Polyakov's classical equivalence of flat bundles with non-linear sigma models we define a new topological invariant for foliations using techniques from noncommutative geometry, in particular the Connes' pairing between K-Theory and cyclic cohomology. This new invariant classifies foliations up to Morita equivalence.
APA, Harvard, Vancouver, ISO, and other styles
6

Vicinsky, Deborah. "The Homotopy Calculus of Categories and Graphs." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19283.

Full text
Abstract:
We construct categories of spectra for two model categories. The first is the category of small categories with the canonical model structure, and the second is the category of directed graphs with the Bisson-Tsemo model structure. In both cases, the category of spectra is homotopically trivial. This implies that the Goodwillie derivatives of the identity functor in each category, if they exist, are weakly equivalent to the zero spectrum. Finally, we give an infinite family of model structures on the category of small categories.
APA, Harvard, Vancouver, ISO, and other styles
7

Bordoni, Rafael de Lima. "Minimal walks and applications." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-215130/.

Full text
Abstract:
Minimal Walks are a method of demonstrations in set theory and general topology. Although the main work of this document will be the construction of the L space, we intend to explain walk\'s fundamentals in a bit more detail.
Passeios mínimos são um método de demonstrações em teoria dos conjuntos e topologia geral. Apesar do trabalho principal dessa dissertação ser a existência do L espaço, a intenção é explicar os fundamentos dos passeios mínimos um tanto detalhadamente.
APA, Harvard, Vancouver, ISO, and other styles
8

Kotecha, Vinay. "Solitons on lattices and curved space-time." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3845/.

Full text
Abstract:
This thesis is concerned with solitons (solutions of certain nonlinear partial differential equations) in certain cases when the underlying space is either a lattice or curved. Chapter 2 of the thesis is concerned with the outcome of collisions between a kink (a 1-dimensional soliton) and an antikink for certain topological discrete (TD) systems. The systems considered are the TD sine-Gordon and the TD ø(^4) For the TD sine-Gordon system it is found that the kink can support an internal shape mode which plays an important role during the collisions. In particular, this mode can be excited during collisions and this leads to spectacular resonance effects. The outcome of any particular collision has sensitive dependence on the initial conditions and could be either a trapped kink-antikink state, a "reflection" or a "transmission”. Such resonance effects are already known to exist for the conventional discrete ø(^4) system, and the TD ø(^4) system is no different, though the results for the two are not entirely similar. Chapter 3 considers the question of the existence of explicit travelling kink solutions for lattice systems. In particular, an expression for such a solution for the integrable lattice sine-Gordon system is derived. In Chapter 4, by reducing the Yang-Mills equations on the (2 + 2)-dimensional ultrahyperbolic space-time, an integrable Yang-Mills-Higgs system on (2 + 1) dimensional de Sitter space-time is derived. It represents the curved space-time version of the Bogomolny equations for monopoles on R(^3) . Using twister methods, various explicit solutions with gauge groups U(l) and SU(2) are constructed. A multi-solution SU(2) solution is also presented.
APA, Harvard, Vancouver, ISO, and other styles
9

Karlsson, Johan. "Inverse Problems in Analytic Interpolation for Robust Control and Spectral Estimation." Doctoral thesis, Stockholm : Matematik, Mathematics, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Potier, Joris. "A few things about hyperimaginaries and stable forking." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/394029.

Full text
Abstract:
The core of this PhD dissertation is basically twofold : On one hand, I get some new results on the relationship between compact groups and bounded hyperimaginaries, extending a little bit the classical results of Lascar and Pillay in Hyperimaginaries And Automorphism Groups. On the other hand, I prove some new results around the so called "stable forking" property, more specifically that a simple theory T has stable forking if Teq has. Quite surprisingly, the proof is not so straigtforward.
En este texto se trata, por una parte, de la relación entre grupos compactos e hiper-imaginarios acotados, y por otra parte se prueba que una teoría T tiene la propiedad de bifurcación estable si i solo si Teq la tiene.
APA, Harvard, Vancouver, ISO, and other styles
11

Zou, Le. "3D face recognition with wireless transportation." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Milliet, Cédric. "Propriétés algébriques des structures menues ou minces, rang de Cantor Bendixson, espaces topologiques généralisés." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00442772.

Full text
Abstract:
Les structures menues apparaissent dans les années 1960 de paire avec la conjecture de Vaught, dont elles sont les seuls contre-exemples possibles. Les structures minces sont introduites par Belegradek, et englobent à la fois les structures minimales et menues. Il est bien connu que les ensembles définissables d'une structure mince sont rangés par le rang de Cantor-Bendixson, lorsque l'on fixe un ensemble fini de paramètres. L'étude de ces structures est rendue difficile par le fait que si l'on augmente cet ensemble de paramètres, le rang croît, et on ne sait maîtriser sa croissance. Nous présentons des propriétés de calcul de ce rang, une condition de chaîne descendante locale sur les groupes définissables (par des formules faisant intervenir des paramètres de la clôture algébrique d'un ensemble fini), ainsi qu'une notion de presque stabilisateur local. Nous en déduisons des propriétés algébriques des structures minces : un corps mince de caractéristique positive est localement de dimension finie sur son centre (une réponse au problème 6.1.5 de Wagner, Simple Theories), et un groupe mince infini a un sous groupe abélien infini (cela répond en particulier à la question 2.8 de Wagner, "Groups in simple theories"). Nous nous intéressons ensuite aux structures menues infiniment définissables, et montrons que les groupes d'arité finie infiniment définissables (par des formules n'utilisant que les paramètres d'un ensemble fini) sont l'intersection de groupes définissables (réponse au problème 6.1.14 du livre de Wagner). Nous étendons le résultat aux demi-groupes, anneaux, corps, catégories et groupoïdes infiniment définissables (toujours avec un nombre fini de paramètres), et donnons des résultats de définissabilité locale pour les groupes et corps simples et menus, infiniment définissables sur un ensemble quelconque de paramètres. Enfin, nous réintroduisons le rang de Cantor dans son contexte topologique et montrons que la dérivée de Cantor peut être vue comme un opérateur de dérivation dans un semi-anneau d'espaces topologiques. Dans l'idée de trouver un rang de Cantor global pour les théories stables, nous essayons de nous débarrasser du mot dénombrable omniprésent lorsque l'on fait de la topologie, en le remplaçant par un cardinal régulier k. Nous développons une notion d'espace k-métrique, de k-topologie, de k-compacité etc. et montrons un k-analogue du lemme de métrisabilité d'Urysohn, et du théorème de Cantor-Bendixson.
APA, Harvard, Vancouver, ISO, and other styles
13

Hrus̆ák, Michael. "Rendezvous with madness." 1999. http://wwwlib.umi.com/cr/yorku/fullcit?pNQ43427.

Full text
Abstract:
Thesis (Ph. D.)--York University, 1999. Graduate Programme in Mathematics and Statistics.
Typescript. Includes bibliographical references (leaves 87-93). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ43427.
APA, Harvard, Vancouver, ISO, and other styles
14

Owen, Robert. "Outer model theory and the definability of forcing." 2008. http://www.library.wisc.edu/databases/connect/dissertations.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Blander, Benjamin A. "Local projective model structures on simplicial presheaves /." 2003. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3088717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Isaksen, Daniel C. "A model structure on the category of pro-simplicial sets /." 1999. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9943080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yeh, Ting-Yu, and 葉庭語. "3GPP TR 36.873 3D Channel Model for LTE Theory and Implementation: Network Topology, Correlated Large Scale Parameters and Link Parameters." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/3em2e2.

Full text
Abstract:
碩士
國立中正大學
通訊工程研究所
104
Formulation of the 3GPP long term evolution-advanced (LTE-A) 4G system standard is almost complete, Release 12 was completed in the second quarter of 2014, and construction of the 3GPP LTE/LTE-A network infrastructure continues to expand and undergo development worldwide. Concurrently, research on 5G mobile communication systems is becoming a central concern among major companies around the world. To achieve international competitiveness, companies must build a simulator to evaluate the system performance of research and design outcomes. Accordingly, this paper focuses on the construction of a spatial channel model simulator that conforms to international standards by utilizing the wraparound method and large-scale parameter correlations. The proposed simulator was based on 3GPP TR 36.873 (“Study on 3D channel model for LTE”) for generating channel response with appropriate spatial properties. System performance was evaluated using a 2D plane antenna to improve the accuracy. This paper discusses the implementation details regarding the network topology, correlated large-scale parameters, and link parameters.
APA, Harvard, Vancouver, ISO, and other styles
18

(11205846), Pablo J. Andujar Guerrero. "DEFINABLE TOPOLOGICAL SPACES IN O-MINIMAL STRUCTURES." Thesis, 2021.

Find full text
Abstract:
We further the research in o-minimal topology by studying in full generality definable topological spaces in o-minimal structures. These are topological spaces $(X, \tau)$, where $X$ is a definable set in an o-minimal structure and the topology $\tau$ has a basis that is (uniformly) definable. Examples include the canonical o-minimal "euclidean" topology, “definable spaces” in the sense of van den Dries [17], definable metric spaces [49], as well as generalizations of classical non-metrizable topological spaces such as the Split Interval and the Alexandrov Double Circle.

We develop a usable topological framework in our setting by introducing definable analogues of classical topological properties such as separability, compactness and metrizability. We characterize these notions, showing in particular that, whenever the underlying o-minimal structure expands $(\mathbb{R},<)$, definable separability and compactness are equivalent to their classical counterparts, and a similar weaker result for definable metrizability. We prove the equivalence of definable compactness and various other properties in terms of definable curves and types. We show that definable topological spaces in o-minimal expansions of ordered groups and fields have properties akin to first countability. Along the way we study o-minimal definable directed sets and types. We prove a density result for o-minimal types, and provide an elementary proof within o-minimality of a statement related to the known connection between dividing and definable types in o-minimal theories.

We prove classification and universality results for one-dimensional definable topological spaces, showing that these can be largely described in terms of a few canonical examples. We derive in particular that the three element basis conjecture of Gruenhage [25] holds for all infinite Hausdorff definable topological spaces in o-minimal structures expanding $(\mathbb{R},<)$, i.e. any such space has a definable copy of an interval with the euclidean, discrete or lower limit topology.

A definable topological space is affine if it is definably homeomorphic to a euclidean space. We prove affineness results in o-minimal expansions of ordered fields. This includes a result for Hausdorff one-dimensional definable topological spaces. We give two new proofs of an affineness theorem of Walsberg [49] for definable metric spaces. We also prove an affineness result for definable topological spaces of any dimension that are Tychonoff in a definable
sense, and derive that a large class of locally affine definable topological spaces are affine.
APA, Harvard, Vancouver, ISO, and other styles
19

Glivická, Jana. "Logické základy forcingu." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-324411.

Full text
Abstract:
This thesis examines the method of forcing in set theory and focuses on aspects that are set aside in the usual presentations or applications of forcing. It is shown that forcing can be formalized in Peano arithmetic (PA) and that consis- tency results obtained by forcing are provable in PA. Two ways are presented of overcoming the assumption of the existence of a countable transitive model. The thesis also studies forcing as a method giving rise to interpretations between theories. A notion of bi-interpretability is defined and a method of forcing over a non-standard model of ZFC is developed in order to argue that ZFC and ZF are not bi-interpretable. 1
APA, Harvard, Vancouver, ISO, and other styles
20

Bouška, David. "Limity tříd konečných struktur v teorii modelů." Master's thesis, 2019. http://www.nusl.cz/ntk/nusl-406283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!